X-Git-Url: http://wagnertech.de/git?a=blobdiff_plain;f=i686-linux-gnu-4.7%2Fusr%2Finclude%2Fc%2B%2B%2F4.7%2Fbits%2Fhashtable_policy.h;fp=i686-linux-gnu-4.7%2Fusr%2Finclude%2Fc%2B%2B%2F4.7%2Fbits%2Fhashtable_policy.h;h=2359e93d70f98f0e3dc4fde4add77f258165ec7b;hb=94df942c2c7bd3457276fe5b7367623cbb8c1302;hp=0000000000000000000000000000000000000000;hpb=4dd7d9155a920895ff7b1cb6b9c9c676aa62000a;p=cross.git diff --git a/i686-linux-gnu-4.7/usr/include/c++/4.7/bits/hashtable_policy.h b/i686-linux-gnu-4.7/usr/include/c++/4.7/bits/hashtable_policy.h new file mode 100644 index 0000000..2359e93 --- /dev/null +++ b/i686-linux-gnu-4.7/usr/include/c++/4.7/bits/hashtable_policy.h @@ -0,0 +1,1221 @@ +// Internal policy header for unordered_set and unordered_map -*- C++ -*- + +// Copyright (C) 2010, 2011, 2012 Free Software Foundation, Inc. +// +// This file is part of the GNU ISO C++ Library. This library is free +// software; you can redistribute it and/or modify it under the +// terms of the GNU General Public License as published by the +// Free Software Foundation; either version 3, or (at your option) +// any later version. + +// This library is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU General Public License for more details. + +// Under Section 7 of GPL version 3, you are granted additional +// permissions described in the GCC Runtime Library Exception, version +// 3.1, as published by the Free Software Foundation. + +// You should have received a copy of the GNU General Public License and +// a copy of the GCC Runtime Library Exception along with this program; +// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see +// . + +/** @file bits/hashtable_policy.h + * This is an internal header file, included by other library headers. + * Do not attempt to use it directly. + * @headername{unordered_map,unordered_set} + */ + +#ifndef _HASHTABLE_POLICY_H +#define _HASHTABLE_POLICY_H 1 + +namespace std _GLIBCXX_VISIBILITY(default) +{ +namespace __detail +{ +_GLIBCXX_BEGIN_NAMESPACE_VERSION + + // Helper function: return distance(first, last) for forward + // iterators, or 0 for input iterators. + template + inline typename std::iterator_traits<_Iterator>::difference_type + __distance_fw(_Iterator __first, _Iterator __last, + std::input_iterator_tag) + { return 0; } + + template + inline typename std::iterator_traits<_Iterator>::difference_type + __distance_fw(_Iterator __first, _Iterator __last, + std::forward_iterator_tag) + { return std::distance(__first, __last); } + + template + inline typename std::iterator_traits<_Iterator>::difference_type + __distance_fw(_Iterator __first, _Iterator __last) + { + typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag; + return __distance_fw(__first, __last, _Tag()); + } + + // Helper type used to detect whether the hash functor is noexcept. + template + struct __is_noexcept_hash : std::integral_constant()(declval()))> + {}; + + // Auxiliary types used for all instantiations of _Hashtable: nodes + // and iterators. + + // Nodes, used to wrap elements stored in the hash table. A policy + // template parameter of class template _Hashtable controls whether + // nodes also store a hash code. In some cases (e.g. strings) this + // may be a performance win. + struct _Hash_node_base + { + _Hash_node_base* _M_nxt; + + _Hash_node_base() + : _M_nxt() { } + _Hash_node_base(_Hash_node_base* __next) + : _M_nxt(__next) { } + }; + + template + struct _Hash_node; + + template + struct _Hash_node<_Value, true> : _Hash_node_base + { + _Value _M_v; + std::size_t _M_hash_code; + + template + _Hash_node(_Args&&... __args) + : _M_v(std::forward<_Args>(__args)...), _M_hash_code() { } + + _Hash_node* _M_next() const + { return static_cast<_Hash_node*>(_M_nxt); } + }; + + template + struct _Hash_node<_Value, false> : _Hash_node_base + { + _Value _M_v; + + template + _Hash_node(_Args&&... __args) + : _M_v(std::forward<_Args>(__args)...) { } + + _Hash_node* _M_next() const + { return static_cast<_Hash_node*>(_M_nxt); } + }; + + // Node iterators, used to iterate through all the hashtable. + template + struct _Node_iterator_base + { + _Node_iterator_base(_Hash_node<_Value, __cache>* __p) + : _M_cur(__p) { } + + void + _M_incr() + { _M_cur = _M_cur->_M_next(); } + + _Hash_node<_Value, __cache>* _M_cur; + }; + + template + inline bool + operator==(const _Node_iterator_base<_Value, __cache>& __x, + const _Node_iterator_base<_Value, __cache>& __y) + { return __x._M_cur == __y._M_cur; } + + template + inline bool + operator!=(const _Node_iterator_base<_Value, __cache>& __x, + const _Node_iterator_base<_Value, __cache>& __y) + { return __x._M_cur != __y._M_cur; } + + template + struct _Node_iterator + : public _Node_iterator_base<_Value, __cache> + { + typedef _Value value_type; + typedef typename std::conditional<__constant_iterators, + const _Value*, _Value*>::type + pointer; + typedef typename std::conditional<__constant_iterators, + const _Value&, _Value&>::type + reference; + typedef std::ptrdiff_t difference_type; + typedef std::forward_iterator_tag iterator_category; + + _Node_iterator() + : _Node_iterator_base<_Value, __cache>(0) { } + + explicit + _Node_iterator(_Hash_node<_Value, __cache>* __p) + : _Node_iterator_base<_Value, __cache>(__p) { } + + reference + operator*() const + { return this->_M_cur->_M_v; } + + pointer + operator->() const + { return std::__addressof(this->_M_cur->_M_v); } + + _Node_iterator& + operator++() + { + this->_M_incr(); + return *this; + } + + _Node_iterator + operator++(int) + { + _Node_iterator __tmp(*this); + this->_M_incr(); + return __tmp; + } + }; + + template + struct _Node_const_iterator + : public _Node_iterator_base<_Value, __cache> + { + typedef _Value value_type; + typedef const _Value* pointer; + typedef const _Value& reference; + typedef std::ptrdiff_t difference_type; + typedef std::forward_iterator_tag iterator_category; + + _Node_const_iterator() + : _Node_iterator_base<_Value, __cache>(0) { } + + explicit + _Node_const_iterator(_Hash_node<_Value, __cache>* __p) + : _Node_iterator_base<_Value, __cache>(__p) { } + + _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators, + __cache>& __x) + : _Node_iterator_base<_Value, __cache>(__x._M_cur) { } + + reference + operator*() const + { return this->_M_cur->_M_v; } + + pointer + operator->() const + { return std::__addressof(this->_M_cur->_M_v); } + + _Node_const_iterator& + operator++() + { + this->_M_incr(); + return *this; + } + + _Node_const_iterator + operator++(int) + { + _Node_const_iterator __tmp(*this); + this->_M_incr(); + return __tmp; + } + }; + + // Many of class template _Hashtable's template parameters are policy + // classes. These are defaults for the policies. + + // Default range hashing function: use division to fold a large number + // into the range [0, N). + struct _Mod_range_hashing + { + typedef std::size_t first_argument_type; + typedef std::size_t second_argument_type; + typedef std::size_t result_type; + + result_type + operator()(first_argument_type __num, second_argument_type __den) const + { return __num % __den; } + }; + + // Default ranged hash function H. In principle it should be a + // function object composed from objects of type H1 and H2 such that + // h(k, N) = h2(h1(k), N), but that would mean making extra copies of + // h1 and h2. So instead we'll just use a tag to tell class template + // hashtable to do that composition. + struct _Default_ranged_hash { }; + + // Default value for rehash policy. Bucket size is (usually) the + // smallest prime that keeps the load factor small enough. + struct _Prime_rehash_policy + { + _Prime_rehash_policy(float __z = 1.0) + : _M_max_load_factor(__z), _M_prev_resize(0), _M_next_resize(0) { } + + float + max_load_factor() const noexcept + { return _M_max_load_factor; } + + // Return a bucket size no smaller than n. + std::size_t + _M_next_bkt(std::size_t __n) const; + + // Return a bucket count appropriate for n elements + std::size_t + _M_bkt_for_elements(std::size_t __n) const; + + // __n_bkt is current bucket count, __n_elt is current element count, + // and __n_ins is number of elements to be inserted. Do we need to + // increase bucket count? If so, return make_pair(true, n), where n + // is the new bucket count. If not, return make_pair(false, 0). + std::pair + _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, + std::size_t __n_ins) const; + + typedef std::pair _State; + + _State + _M_state() const + { return std::make_pair(_M_prev_resize, _M_next_resize); } + + void + _M_reset(const _State& __state) + { + _M_prev_resize = __state.first; + _M_next_resize = __state.second; + } + + enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 }; + + static const std::size_t _S_growth_factor = 2; + + float _M_max_load_factor; + mutable std::size_t _M_prev_resize; + mutable std::size_t _M_next_resize; + }; + + extern const unsigned long __prime_list[]; + + // XXX This is a hack. There's no good reason for any of + // _Prime_rehash_policy's member functions to be inline. + + // Return a prime no smaller than n. + inline std::size_t + _Prime_rehash_policy:: + _M_next_bkt(std::size_t __n) const + { + // Optimize lookups involving the first elements of __prime_list. + // (useful to speed-up, eg, constructors) + static const unsigned char __fast_bkt[12] + = { 2, 2, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11 }; + + const std::size_t __grown_n = __n * _S_growth_factor; + if (__grown_n <= 11) + { + _M_prev_resize = 0; + _M_next_resize + = __builtin_ceil(__fast_bkt[__grown_n] + * (long double)_M_max_load_factor); + return __fast_bkt[__grown_n]; + } + + const unsigned long* __next_bkt + = std::lower_bound(__prime_list + 5, __prime_list + _S_n_primes, + __grown_n); + const unsigned long* __prev_bkt + = std::lower_bound(__prime_list + 1, __next_bkt, __n / _S_growth_factor); + + _M_prev_resize + = __builtin_floor(*(__prev_bkt - 1) * (long double)_M_max_load_factor); + _M_next_resize + = __builtin_ceil(*__next_bkt * (long double)_M_max_load_factor); + return *__next_bkt; + } + + // Return the smallest prime p such that alpha p >= n, where alpha + // is the load factor. + inline std::size_t + _Prime_rehash_policy:: + _M_bkt_for_elements(std::size_t __n) const + { return _M_next_bkt(__builtin_ceil(__n / (long double)_M_max_load_factor)); } + + // Finds the smallest prime p such that alpha p > __n_elt + __n_ins. + // If p > __n_bkt, return make_pair(true, p); otherwise return + // make_pair(false, 0). In principle this isn't very different from + // _M_bkt_for_elements. + + // The only tricky part is that we're caching the element count at + // which we need to rehash, so we don't have to do a floating-point + // multiply for every insertion. + + inline std::pair + _Prime_rehash_policy:: + _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, + std::size_t __n_ins) const + { + if (__n_elt + __n_ins >= _M_next_resize) + { + long double __min_bkts = (__n_elt + __n_ins) + / (long double)_M_max_load_factor; + if (__min_bkts >= __n_bkt) + return std::make_pair(true, + _M_next_bkt(__builtin_floor(__min_bkts) + 1)); + else + { + _M_next_resize + = __builtin_floor(__n_bkt * (long double)_M_max_load_factor); + return std::make_pair(false, 0); + } + } + else if (__n_elt + __n_ins < _M_prev_resize) + { + long double __min_bkts = (__n_elt + __n_ins) + / (long double)_M_max_load_factor; + return std::make_pair(true, + _M_next_bkt(__builtin_floor(__min_bkts) + 1)); + } + else + return std::make_pair(false, 0); + } + + // Base classes for std::_Hashtable. We define these base classes + // because in some cases we want to do different things depending + // on the value of a policy class. In some cases the policy class + // affects which member functions and nested typedefs are defined; + // we handle that by specializing base class templates. Several of + // the base class templates need to access other members of class + // template _Hashtable, so we use the "curiously recurring template + // pattern" for them. + + // class template _Map_base. If the hashtable has a value type of + // the form pair and a key extraction policy that returns the + // first part of the pair, the hashtable gets a mapped_type typedef. + // If it satisfies those criteria and also has unique keys, then it + // also gets an operator[]. + template + struct _Map_base { }; + + template + struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable> + { + typedef typename _Pair::second_type mapped_type; + }; + + template + struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable> + { + typedef typename _Pair::second_type mapped_type; + + mapped_type& + operator[](const _Key& __k); + + mapped_type& + operator[](_Key&& __k); + + // _GLIBCXX_RESOLVE_LIB_DEFECTS + // DR 761. unordered_map needs an at() member function. + mapped_type& + at(const _Key& __k); + + const mapped_type& + at(const _Key& __k) const; + }; + + template + typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>, + true, _Hashtable>::mapped_type& + _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>:: + operator[](const _Key& __k) + { + _Hashtable* __h = static_cast<_Hashtable*>(this); + typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k); + std::size_t __n = __h->_M_bucket_index(__k, __code); + + typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code); + if (!__p) + return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()), + __n, __code)->second; + return (__p->_M_v).second; + } + + template + typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>, + true, _Hashtable>::mapped_type& + _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>:: + operator[](_Key&& __k) + { + _Hashtable* __h = static_cast<_Hashtable*>(this); + typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k); + std::size_t __n = __h->_M_bucket_index(__k, __code); + + typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code); + if (!__p) + return __h->_M_insert_bucket(std::make_pair(std::move(__k), + mapped_type()), + __n, __code)->second; + return (__p->_M_v).second; + } + + template + typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>, + true, _Hashtable>::mapped_type& + _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>:: + at(const _Key& __k) + { + _Hashtable* __h = static_cast<_Hashtable*>(this); + typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k); + std::size_t __n = __h->_M_bucket_index(__k, __code); + + typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code); + if (!__p) + __throw_out_of_range(__N("_Map_base::at")); + return (__p->_M_v).second; + } + + template + const typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>, + true, _Hashtable>::mapped_type& + _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>:: + at(const _Key& __k) const + { + const _Hashtable* __h = static_cast(this); + typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k); + std::size_t __n = __h->_M_bucket_index(__k, __code); + + typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code); + if (!__p) + __throw_out_of_range(__N("_Map_base::at")); + return (__p->_M_v).second; + } + + // class template _Rehash_base. Give hashtable the max_load_factor + // functions and reserve iff the rehash policy is _Prime_rehash_policy. + template + struct _Rehash_base { }; + + template + struct _Rehash_base<_Prime_rehash_policy, _Hashtable> + { + float + max_load_factor() const noexcept + { + const _Hashtable* __this = static_cast(this); + return __this->__rehash_policy().max_load_factor(); + } + + void + max_load_factor(float __z) + { + _Hashtable* __this = static_cast<_Hashtable*>(this); + __this->__rehash_policy(_Prime_rehash_policy(__z)); + } + + void + reserve(std::size_t __n) + { + _Hashtable* __this = static_cast<_Hashtable*>(this); + __this->rehash(__builtin_ceil(__n / max_load_factor())); + } + }; + + // Helper class using EBO when it is not forbidden, type is not final, + // and when it worth it, type is empty. + template + struct _Hashtable_ebo_helper; + + // Specialization using EBO. + template + struct _Hashtable_ebo_helper<_Nm, _Tp, true> + // See PR53067. + : public _Tp + { + _Hashtable_ebo_helper() = default; + _Hashtable_ebo_helper(const _Tp& __tp) : _Tp(__tp) + { } + + static const _Tp& + _S_cget(const _Hashtable_ebo_helper& __eboh) + { return static_cast(__eboh); } + + static _Tp& + _S_get(_Hashtable_ebo_helper& __eboh) + { return static_cast<_Tp&>(__eboh); } + }; + + // Specialization not using EBO. + template + struct _Hashtable_ebo_helper<_Nm, _Tp, false> + { + _Hashtable_ebo_helper() = default; + _Hashtable_ebo_helper(const _Tp& __tp) : _M_tp(__tp) + { } + + static const _Tp& + _S_cget(const _Hashtable_ebo_helper& __eboh) + { return __eboh._M_tp; } + + static _Tp& + _S_get(_Hashtable_ebo_helper& __eboh) + { return __eboh._M_tp; } + + private: + _Tp _M_tp; + }; + + // Class template _Hash_code_base. Encapsulates two policy issues that + // aren't quite orthogonal. + // (1) the difference between using a ranged hash function and using + // the combination of a hash function and a range-hashing function. + // In the former case we don't have such things as hash codes, so + // we have a dummy type as placeholder. + // (2) Whether or not we cache hash codes. Caching hash codes is + // meaningless if we have a ranged hash function. + // We also put the key extraction objects here, for convenience. + // + // Each specialization derives from one or more of the template parameters to + // benefit from Ebo. This is important as this type is inherited in some cases + // by the _Local_iterator_base type used to implement local_iterator and + // const_local_iterator. As with any iterator type we prefer to make it as + // small as possible. + + // Primary template: unused except as a hook for specializations. + template + struct _Hash_code_base; + + // Specialization: ranged hash function, no caching hash codes. H1 + // and H2 are provided but ignored. We define a dummy hash code type. + template + struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false> + // See PR53067. + : public _Hashtable_ebo_helper<0, _ExtractKey>, + public _Hashtable_ebo_helper<1, _Hash> + { + private: + typedef _Hashtable_ebo_helper<0, _ExtractKey> _EboExtractKey; + typedef _Hashtable_ebo_helper<1, _Hash> _EboHash; + + protected: + // We need the default constructor for the local iterators. + _Hash_code_base() = default; + _Hash_code_base(const _ExtractKey& __ex, + const _H1&, const _H2&, const _Hash& __h) + : _EboExtractKey(__ex), _EboHash(__h) { } + + typedef void* _Hash_code_type; + + _Hash_code_type + _M_hash_code(const _Key& __key) const + { return 0; } + + std::size_t + _M_bucket_index(const _Key& __k, _Hash_code_type, + std::size_t __n) const + { return _M_ranged_hash()(__k, __n); } + + std::size_t + _M_bucket_index(const _Hash_node<_Value, false>* __p, + std::size_t __n) const + { return _M_ranged_hash()(_M_extract()(__p->_M_v), __n); } + + void + _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const + { } + + void + _M_copy_code(_Hash_node<_Value, false>*, + const _Hash_node<_Value, false>*) const + { } + + void + _M_swap(_Hash_code_base& __x) + { + std::swap(_M_extract(), __x._M_extract()); + std::swap(_M_ranged_hash(), __x._M_ranged_hash()); + } + + protected: + const _ExtractKey& + _M_extract() const { return _EboExtractKey::_S_cget(*this); } + _ExtractKey& + _M_extract() { return _EboExtractKey::_S_get(*this); } + const _Hash& + _M_ranged_hash() const { return _EboHash::_S_cget(*this); } + _Hash& + _M_ranged_hash() { return _EboHash::_S_get(*this); } + }; + + // No specialization for ranged hash function while caching hash codes. + // That combination is meaningless, and trying to do it is an error. + + // Specialization: ranged hash function, cache hash codes. This + // combination is meaningless, so we provide only a declaration + // and no definition. + template + struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>; + + // Specialization: hash function and range-hashing function, no + // caching of hash codes. + // Provides typedef and accessor required by TR1. + template + struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, + _Default_ranged_hash, false> + // See PR53067. + : public _Hashtable_ebo_helper<0, _ExtractKey>, + public _Hashtable_ebo_helper<1, _H1>, + public _Hashtable_ebo_helper<2, _H2> + { + private: + typedef _Hashtable_ebo_helper<0, _ExtractKey> _EboExtractKey; + typedef _Hashtable_ebo_helper<1, _H1> _EboH1; + typedef _Hashtable_ebo_helper<2, _H2> _EboH2; + + public: + typedef _H1 hasher; + + hasher + hash_function() const + { return _M_h1(); } + + protected: + // We need the default constructor for the local iterators. + _Hash_code_base() = default; + _Hash_code_base(const _ExtractKey& __ex, + const _H1& __h1, const _H2& __h2, + const _Default_ranged_hash&) + : _EboExtractKey(__ex), _EboH1(__h1), _EboH2(__h2) { } + + typedef std::size_t _Hash_code_type; + + _Hash_code_type + _M_hash_code(const _Key& __k) const + { return _M_h1()(__k); } + + std::size_t + _M_bucket_index(const _Key&, _Hash_code_type __c, + std::size_t __n) const + { return _M_h2()(__c, __n); } + + std::size_t + _M_bucket_index(const _Hash_node<_Value, false>* __p, + std::size_t __n) const + { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v)), __n); } + + void + _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const + { } + + void + _M_copy_code(_Hash_node<_Value, false>*, + const _Hash_node<_Value, false>*) const + { } + + void + _M_swap(_Hash_code_base& __x) + { + std::swap(_M_extract(), __x._M_extract()); + std::swap(_M_h1(), __x._M_h1()); + std::swap(_M_h2(), __x._M_h2()); + } + + protected: + const _ExtractKey& + _M_extract() const { return _EboExtractKey::_S_cget(*this); } + _ExtractKey& + _M_extract() { return _EboExtractKey::_S_get(*this); } + const _H1& + _M_h1() const { return _EboH1::_S_cget(*this); } + _H1& + _M_h1() { return _EboH1::_S_get(*this); } + const _H2& + _M_h2() const { return _EboH2::_S_cget(*this); } + _H2& + _M_h2() { return _EboH2::_S_get(*this); } + }; + + // Specialization: hash function and range-hashing function, + // caching hash codes. H is provided but ignored. Provides + // typedef and accessor required by TR1. + template + struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, + _Default_ranged_hash, true> + // See PR53067. + : public _Hashtable_ebo_helper<0, _ExtractKey>, + public _Hashtable_ebo_helper<1, _H1>, + public _Hashtable_ebo_helper<2, _H2> + { + private: + typedef _Hashtable_ebo_helper<0, _ExtractKey> _EboExtractKey; + typedef _Hashtable_ebo_helper<1, _H1> _EboH1; + typedef _Hashtable_ebo_helper<2, _H2> _EboH2; + + public: + typedef _H1 hasher; + + hasher + hash_function() const + { return _M_h1(); } + + protected: + _Hash_code_base(const _ExtractKey& __ex, + const _H1& __h1, const _H2& __h2, + const _Default_ranged_hash&) + : _EboExtractKey(__ex), _EboH1(__h1), _EboH2(__h2) { } + + typedef std::size_t _Hash_code_type; + + _Hash_code_type + _M_hash_code(const _Key& __k) const + { return _M_h1()(__k); } + + std::size_t + _M_bucket_index(const _Key&, _Hash_code_type __c, + std::size_t __n) const + { return _M_h2()(__c, __n); } + + std::size_t + _M_bucket_index(const _Hash_node<_Value, true>* __p, + std::size_t __n) const + { return _M_h2()(__p->_M_hash_code, __n); } + + void + _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const + { __n->_M_hash_code = __c; } + + void + _M_copy_code(_Hash_node<_Value, true>* __to, + const _Hash_node<_Value, true>* __from) const + { __to->_M_hash_code = __from->_M_hash_code; } + + void + _M_swap(_Hash_code_base& __x) + { + std::swap(_M_extract(), __x._M_extract()); + std::swap(_M_h1(), __x._M_h1()); + std::swap(_M_h2(), __x._M_h2()); + } + + protected: + const _ExtractKey& + _M_extract() const { return _EboExtractKey::_S_cget(*this); } + _ExtractKey& + _M_extract() { return _EboExtractKey::_S_get(*this); } + const _H1& + _M_h1() const { return _EboH1::_S_cget(*this); } + _H1& + _M_h1() { return _EboH1::_S_get(*this); } + const _H2& + _M_h2() const { return _EboH2::_S_cget(*this); } + _H2& + _M_h2() { return _EboH2::_S_get(*this); } + }; + + template + struct _Equal_helper; + + template + struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true> + { + static bool + _S_equals(const _Equal& __eq, const _ExtractKey& __extract, + const _Key& __k, _HashCodeType __c, + _Hash_node<_Value, true>* __n) + { return __c == __n->_M_hash_code + && __eq(__k, __extract(__n->_M_v)); } + }; + + template + struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false> + { + static bool + _S_equals(const _Equal& __eq, const _ExtractKey& __extract, + const _Key& __k, _HashCodeType, + _Hash_node<_Value, false>* __n) + { return __eq(__k, __extract(__n->_M_v)); } + }; + + // Helper class adding management of _Equal functor to _Hash_code_base + // type. + template + struct _Hashtable_base + // See PR53067. + : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, + __cache_hash_code>, + public _Hashtable_ebo_helper<0, _Equal> + { + private: + typedef _Hashtable_ebo_helper<0, _Equal> _EboEqual; + + protected: + typedef _Hash_code_base<_Key, _Value, _ExtractKey, + _H1, _H2, _Hash, __cache_hash_code> _HCBase; + typedef typename _HCBase::_Hash_code_type _Hash_code_type; + + _Hashtable_base(const _ExtractKey& __ex, + const _H1& __h1, const _H2& __h2, + const _Hash& __hash, const _Equal& __eq) + : _HCBase(__ex, __h1, __h2, __hash), _EboEqual(__eq) { } + + bool + _M_equals(const _Key& __k, _Hash_code_type __c, + _Hash_node<_Value, __cache_hash_code>* __n) const + { + typedef _Equal_helper<_Key, _Value, _ExtractKey, + _Equal, _Hash_code_type, + __cache_hash_code> _EqualHelper; + return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(), + __k, __c, __n); + } + + void + _M_swap(_Hashtable_base& __x) + { + _HCBase::_M_swap(__x); + std::swap(_M_eq(), __x._M_eq()); + } + + protected: + const _Equal& + _M_eq() const { return _EboEqual::_S_cget(*this); } + _Equal& + _M_eq() { return _EboEqual::_S_get(*this); } + }; + + // Local iterators, used to iterate within a bucket but not between + // buckets. + template + struct _Local_iterator_base; + + template + struct _Local_iterator_base<_Key, _Value, _ExtractKey, + _H1, _H2, _Hash, true> + // See PR53067. + : public _H2 + { + _Local_iterator_base() = default; + _Local_iterator_base(_Hash_node<_Value, true>* __p, + std::size_t __bkt, std::size_t __bkt_count) + : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { } + + void + _M_incr() + { + _M_cur = _M_cur->_M_next(); + if (_M_cur) + { + std::size_t __bkt = _M_h2()(_M_cur->_M_hash_code, _M_bucket_count); + if (__bkt != _M_bucket) + _M_cur = nullptr; + } + } + + const _H2& _M_h2() const + { return *this; } + + _Hash_node<_Value, true>* _M_cur; + std::size_t _M_bucket; + std::size_t _M_bucket_count; + }; + + template + struct _Local_iterator_base<_Key, _Value, _ExtractKey, + _H1, _H2, _Hash, false> + // See PR53067. + : public _Hash_code_base<_Key, _Value, _ExtractKey, + _H1, _H2, _Hash, false> + { + _Local_iterator_base() = default; + _Local_iterator_base(_Hash_node<_Value, false>* __p, + std::size_t __bkt, std::size_t __bkt_count) + : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { } + + void + _M_incr() + { + _M_cur = _M_cur->_M_next(); + if (_M_cur) + { + std::size_t __bkt = this->_M_bucket_index(_M_cur, _M_bucket_count); + if (__bkt != _M_bucket) + _M_cur = nullptr; + } + } + + _Hash_node<_Value, false>* _M_cur; + std::size_t _M_bucket; + std::size_t _M_bucket_count; + }; + + template + inline bool + operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey, + _H1, _H2, _Hash, __cache>& __x, + const _Local_iterator_base<_Key, _Value, _ExtractKey, + _H1, _H2, _Hash, __cache>& __y) + { return __x._M_cur == __y._M_cur; } + + template + inline bool + operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey, + _H1, _H2, _Hash, __cache>& __x, + const _Local_iterator_base<_Key, _Value, _ExtractKey, + _H1, _H2, _Hash, __cache>& __y) + { return __x._M_cur != __y._M_cur; } + + template + struct _Local_iterator + : public _Local_iterator_base<_Key, _Value, _ExtractKey, + _H1, _H2, _Hash, __cache> + { + typedef _Value value_type; + typedef typename std::conditional<__constant_iterators, + const _Value*, _Value*>::type + pointer; + typedef typename std::conditional<__constant_iterators, + const _Value&, _Value&>::type + reference; + typedef std::ptrdiff_t difference_type; + typedef std::forward_iterator_tag iterator_category; + + _Local_iterator() = default; + + explicit + _Local_iterator(_Hash_node<_Value, __cache>* __p, + std::size_t __bkt, std::size_t __bkt_count) + : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, + __cache>(__p, __bkt, __bkt_count) + { } + + reference + operator*() const + { return this->_M_cur->_M_v; } + + pointer + operator->() const + { return std::__addressof(this->_M_cur->_M_v); } + + _Local_iterator& + operator++() + { + this->_M_incr(); + return *this; + } + + _Local_iterator + operator++(int) + { + _Local_iterator __tmp(*this); + this->_M_incr(); + return __tmp; + } + }; + + template + struct _Local_const_iterator + : public _Local_iterator_base<_Key, _Value, _ExtractKey, + _H1, _H2, _Hash, __cache> + { + typedef _Value value_type; + typedef const _Value* pointer; + typedef const _Value& reference; + typedef std::ptrdiff_t difference_type; + typedef std::forward_iterator_tag iterator_category; + + _Local_const_iterator() = default; + + explicit + _Local_const_iterator(_Hash_node<_Value, __cache>* __p, + std::size_t __bkt, std::size_t __bkt_count) + : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, + __cache>(__p, __bkt, __bkt_count) + { } + + _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey, + _H1, _H2, _Hash, + __constant_iterators, + __cache>& __x) + : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, + __cache>(__x._M_cur, __x._M_bucket, + __x._M_bucket_count) + { } + + reference + operator*() const + { return this->_M_cur->_M_v; } + + pointer + operator->() const + { return std::__addressof(this->_M_cur->_M_v); } + + _Local_const_iterator& + operator++() + { + this->_M_incr(); + return *this; + } + + _Local_const_iterator + operator++(int) + { + _Local_const_iterator __tmp(*this); + this->_M_incr(); + return __tmp; + } + }; + + + // Class template _Equality_base. This is for implementing equality + // comparison for unordered containers, per N3068, by John Lakos and + // Pablo Halpern. Algorithmically, we follow closely the reference + // implementations therein. + template + struct _Equality_base; + + template + struct _Equality_base<_ExtractKey, true, _Hashtable> + { + bool _M_equal(const _Hashtable&) const; + }; + + template + bool + _Equality_base<_ExtractKey, true, _Hashtable>:: + _M_equal(const _Hashtable& __other) const + { + const _Hashtable* __this = static_cast(this); + + if (__this->size() != __other.size()) + return false; + + for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx) + { + const auto __ity = __other.find(_ExtractKey()(*__itx)); + if (__ity == __other.end() || !bool(*__ity == *__itx)) + return false; + } + return true; + } + + template + struct _Equality_base<_ExtractKey, false, _Hashtable> + { + bool _M_equal(const _Hashtable&) const; + + private: + template + static bool + _S_is_permutation(_Uiterator, _Uiterator, _Uiterator); + }; + + // See std::is_permutation in N3068. + template + template + bool + _Equality_base<_ExtractKey, false, _Hashtable>:: + _S_is_permutation(_Uiterator __first1, _Uiterator __last1, + _Uiterator __first2) + { + for (; __first1 != __last1; ++__first1, ++__first2) + if (!(*__first1 == *__first2)) + break; + + if (__first1 == __last1) + return true; + + _Uiterator __last2 = __first2; + std::advance(__last2, std::distance(__first1, __last1)); + + for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1) + { + _Uiterator __tmp = __first1; + while (__tmp != __it1 && !bool(*__tmp == *__it1)) + ++__tmp; + + // We've seen this one before. + if (__tmp != __it1) + continue; + + std::ptrdiff_t __n2 = 0; + for (__tmp = __first2; __tmp != __last2; ++__tmp) + if (*__tmp == *__it1) + ++__n2; + + if (!__n2) + return false; + + std::ptrdiff_t __n1 = 0; + for (__tmp = __it1; __tmp != __last1; ++__tmp) + if (*__tmp == *__it1) + ++__n1; + + if (__n1 != __n2) + return false; + } + return true; + } + + template + bool + _Equality_base<_ExtractKey, false, _Hashtable>:: + _M_equal(const _Hashtable& __other) const + { + const _Hashtable* __this = static_cast(this); + + if (__this->size() != __other.size()) + return false; + + for (auto __itx = __this->begin(); __itx != __this->end();) + { + const auto __xrange = __this->equal_range(_ExtractKey()(*__itx)); + const auto __yrange = __other.equal_range(_ExtractKey()(*__itx)); + + if (std::distance(__xrange.first, __xrange.second) + != std::distance(__yrange.first, __yrange.second)) + return false; + + if (!_S_is_permutation(__xrange.first, + __xrange.second, + __yrange.first)) + return false; + + __itx = __xrange.second; + } + return true; + } + +_GLIBCXX_END_NAMESPACE_VERSION +} // namespace __detail +} // namespace std + +#endif // _HASHTABLE_POLICY_H