X-Git-Url: http://wagnertech.de/git?a=blobdiff_plain;f=i686-linux-gnu-4.7%2Fusr%2Finclude%2Fc%2B%2B%2F4.7%2Ftr1%2Fexp_integral.tcc;fp=i686-linux-gnu-4.7%2Fusr%2Finclude%2Fc%2B%2B%2F4.7%2Ftr1%2Fexp_integral.tcc;h=6a49b354caec2c5e9c26a1249306820abdf44014;hb=94df942c2c7bd3457276fe5b7367623cbb8c1302;hp=0000000000000000000000000000000000000000;hpb=4dd7d9155a920895ff7b1cb6b9c9c676aa62000a;p=cross.git diff --git a/i686-linux-gnu-4.7/usr/include/c++/4.7/tr1/exp_integral.tcc b/i686-linux-gnu-4.7/usr/include/c++/4.7/tr1/exp_integral.tcc new file mode 100644 index 0000000..6a49b35 --- /dev/null +++ b/i686-linux-gnu-4.7/usr/include/c++/4.7/tr1/exp_integral.tcc @@ -0,0 +1,527 @@ +// Special functions -*- C++ -*- + +// Copyright (C) 2006, 2007, 2008, 2009, 2010 +// Free Software Foundation, Inc. +// +// This file is part of the GNU ISO C++ Library. This library is free +// software; you can redistribute it and/or modify it under the +// terms of the GNU General Public License as published by the +// Free Software Foundation; either version 3, or (at your option) +// any later version. +// +// This library is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU General Public License for more details. +// +// Under Section 7 of GPL version 3, you are granted additional +// permissions described in the GCC Runtime Library Exception, version +// 3.1, as published by the Free Software Foundation. + +// You should have received a copy of the GNU General Public License and +// a copy of the GCC Runtime Library Exception along with this program; +// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see +// . + +/** @file tr1/exp_integral.tcc + * This is an internal header file, included by other library headers. + * Do not attempt to use it directly. @headername{tr1/cmath} + */ + +// +// ISO C++ 14882 TR1: 5.2 Special functions +// + +// Written by Edward Smith-Rowland based on: +// +// (1) Handbook of Mathematical Functions, +// Ed. by Milton Abramowitz and Irene A. Stegun, +// Dover Publications, New-York, Section 5, pp. 228-251. +// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl +// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, +// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), +// 2nd ed, pp. 222-225. +// + +#ifndef _GLIBCXX_TR1_EXP_INTEGRAL_TCC +#define _GLIBCXX_TR1_EXP_INTEGRAL_TCC 1 + +#include "special_function_util.h" + +namespace std _GLIBCXX_VISIBILITY(default) +{ +namespace tr1 +{ + // [5.2] Special functions + + // Implementation-space details. + namespace __detail + { + _GLIBCXX_BEGIN_NAMESPACE_VERSION + + template _Tp __expint_E1(const _Tp); + + /** + * @brief Return the exponential integral @f$ E_1(x) @f$ + * by series summation. This should be good + * for @f$ x < 1 @f$. + * + * The exponential integral is given by + * \f[ + * E_1(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} dt + * \f] + * + * @param __x The argument of the exponential integral function. + * @return The exponential integral. + */ + template + _Tp + __expint_E1_series(const _Tp __x) + { + const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); + _Tp __term = _Tp(1); + _Tp __esum = _Tp(0); + _Tp __osum = _Tp(0); + const unsigned int __max_iter = 100; + for (unsigned int __i = 1; __i < __max_iter; ++__i) + { + __term *= - __x / __i; + if (std::abs(__term) < __eps) + break; + if (__term >= _Tp(0)) + __esum += __term / __i; + else + __osum += __term / __i; + } + + return - __esum - __osum + - __numeric_constants<_Tp>::__gamma_e() - std::log(__x); + } + + + /** + * @brief Return the exponential integral @f$ E_1(x) @f$ + * by asymptotic expansion. + * + * The exponential integral is given by + * \f[ + * E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt + * \f] + * + * @param __x The argument of the exponential integral function. + * @return The exponential integral. + */ + template + _Tp + __expint_E1_asymp(const _Tp __x) + { + _Tp __term = _Tp(1); + _Tp __esum = _Tp(1); + _Tp __osum = _Tp(0); + const unsigned int __max_iter = 1000; + for (unsigned int __i = 1; __i < __max_iter; ++__i) + { + _Tp __prev = __term; + __term *= - __i / __x; + if (std::abs(__term) > std::abs(__prev)) + break; + if (__term >= _Tp(0)) + __esum += __term; + else + __osum += __term; + } + + return std::exp(- __x) * (__esum + __osum) / __x; + } + + + /** + * @brief Return the exponential integral @f$ E_n(x) @f$ + * by series summation. + * + * The exponential integral is given by + * \f[ + * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt + * \f] + * + * @param __n The order of the exponential integral function. + * @param __x The argument of the exponential integral function. + * @return The exponential integral. + */ + template + _Tp + __expint_En_series(const unsigned int __n, const _Tp __x) + { + const unsigned int __max_iter = 100; + const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); + const int __nm1 = __n - 1; + _Tp __ans = (__nm1 != 0 + ? _Tp(1) / __nm1 : -std::log(__x) + - __numeric_constants<_Tp>::__gamma_e()); + _Tp __fact = _Tp(1); + for (int __i = 1; __i <= __max_iter; ++__i) + { + __fact *= -__x / _Tp(__i); + _Tp __del; + if ( __i != __nm1 ) + __del = -__fact / _Tp(__i - __nm1); + else + { + _Tp __psi = -__numeric_constants<_Tp>::gamma_e(); + for (int __ii = 1; __ii <= __nm1; ++__ii) + __psi += _Tp(1) / _Tp(__ii); + __del = __fact * (__psi - std::log(__x)); + } + __ans += __del; + if (std::abs(__del) < __eps * std::abs(__ans)) + return __ans; + } + std::__throw_runtime_error(__N("Series summation failed " + "in __expint_En_series.")); + } + + + /** + * @brief Return the exponential integral @f$ E_n(x) @f$ + * by continued fractions. + * + * The exponential integral is given by + * \f[ + * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt + * \f] + * + * @param __n The order of the exponential integral function. + * @param __x The argument of the exponential integral function. + * @return The exponential integral. + */ + template + _Tp + __expint_En_cont_frac(const unsigned int __n, const _Tp __x) + { + const unsigned int __max_iter = 100; + const _Tp __eps = std::numeric_limits<_Tp>::epsilon(); + const _Tp __fp_min = std::numeric_limits<_Tp>::min(); + const int __nm1 = __n - 1; + _Tp __b = __x + _Tp(__n); + _Tp __c = _Tp(1) / __fp_min; + _Tp __d = _Tp(1) / __b; + _Tp __h = __d; + for ( unsigned int __i = 1; __i <= __max_iter; ++__i ) + { + _Tp __a = -_Tp(__i * (__nm1 + __i)); + __b += _Tp(2); + __d = _Tp(1) / (__a * __d + __b); + __c = __b + __a / __c; + const _Tp __del = __c * __d; + __h *= __del; + if (std::abs(__del - _Tp(1)) < __eps) + { + const _Tp __ans = __h * std::exp(-__x); + return __ans; + } + } + std::__throw_runtime_error(__N("Continued fraction failed " + "in __expint_En_cont_frac.")); + } + + + /** + * @brief Return the exponential integral @f$ E_n(x) @f$ + * by recursion. Use upward recursion for @f$ x < n @f$ + * and downward recursion (Miller's algorithm) otherwise. + * + * The exponential integral is given by + * \f[ + * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt + * \f] + * + * @param __n The order of the exponential integral function. + * @param __x The argument of the exponential integral function. + * @return The exponential integral. + */ + template + _Tp + __expint_En_recursion(const unsigned int __n, const _Tp __x) + { + _Tp __En; + _Tp __E1 = __expint_E1(__x); + if (__x < _Tp(__n)) + { + // Forward recursion is stable only for n < x. + __En = __E1; + for (unsigned int __j = 2; __j < __n; ++__j) + __En = (std::exp(-__x) - __x * __En) / _Tp(__j - 1); + } + else + { + // Backward recursion is stable only for n >= x. + __En = _Tp(1); + const int __N = __n + 20; // TODO: Check this starting number. + _Tp __save = _Tp(0); + for (int __j = __N; __j > 0; --__j) + { + __En = (std::exp(-__x) - __j * __En) / __x; + if (__j == __n) + __save = __En; + } + _Tp __norm = __En / __E1; + __En /= __norm; + } + + return __En; + } + + /** + * @brief Return the exponential integral @f$ Ei(x) @f$ + * by series summation. + * + * The exponential integral is given by + * \f[ + * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt + * \f] + * + * @param __x The argument of the exponential integral function. + * @return The exponential integral. + */ + template + _Tp + __expint_Ei_series(const _Tp __x) + { + _Tp __term = _Tp(1); + _Tp __sum = _Tp(0); + const unsigned int __max_iter = 1000; + for (unsigned int __i = 1; __i < __max_iter; ++__i) + { + __term *= __x / __i; + __sum += __term / __i; + if (__term < std::numeric_limits<_Tp>::epsilon() * __sum) + break; + } + + return __numeric_constants<_Tp>::__gamma_e() + __sum + std::log(__x); + } + + + /** + * @brief Return the exponential integral @f$ Ei(x) @f$ + * by asymptotic expansion. + * + * The exponential integral is given by + * \f[ + * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt + * \f] + * + * @param __x The argument of the exponential integral function. + * @return The exponential integral. + */ + template + _Tp + __expint_Ei_asymp(const _Tp __x) + { + _Tp __term = _Tp(1); + _Tp __sum = _Tp(1); + const unsigned int __max_iter = 1000; + for (unsigned int __i = 1; __i < __max_iter; ++__i) + { + _Tp __prev = __term; + __term *= __i / __x; + if (__term < std::numeric_limits<_Tp>::epsilon()) + break; + if (__term >= __prev) + break; + __sum += __term; + } + + return std::exp(__x) * __sum / __x; + } + + + /** + * @brief Return the exponential integral @f$ Ei(x) @f$. + * + * The exponential integral is given by + * \f[ + * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt + * \f] + * + * @param __x The argument of the exponential integral function. + * @return The exponential integral. + */ + template + _Tp + __expint_Ei(const _Tp __x) + { + if (__x < _Tp(0)) + return -__expint_E1(-__x); + else if (__x < -std::log(std::numeric_limits<_Tp>::epsilon())) + return __expint_Ei_series(__x); + else + return __expint_Ei_asymp(__x); + } + + + /** + * @brief Return the exponential integral @f$ E_1(x) @f$. + * + * The exponential integral is given by + * \f[ + * E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt + * \f] + * + * @param __x The argument of the exponential integral function. + * @return The exponential integral. + */ + template + _Tp + __expint_E1(const _Tp __x) + { + if (__x < _Tp(0)) + return -__expint_Ei(-__x); + else if (__x < _Tp(1)) + return __expint_E1_series(__x); + else if (__x < _Tp(100)) // TODO: Find a good asymptotic switch point. + return __expint_En_cont_frac(1, __x); + else + return __expint_E1_asymp(__x); + } + + + /** + * @brief Return the exponential integral @f$ E_n(x) @f$ + * for large argument. + * + * The exponential integral is given by + * \f[ + * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt + * \f] + * + * This is something of an extension. + * + * @param __n The order of the exponential integral function. + * @param __x The argument of the exponential integral function. + * @return The exponential integral. + */ + template + _Tp + __expint_asymp(const unsigned int __n, const _Tp __x) + { + _Tp __term = _Tp(1); + _Tp __sum = _Tp(1); + for (unsigned int __i = 1; __i <= __n; ++__i) + { + _Tp __prev = __term; + __term *= -(__n - __i + 1) / __x; + if (std::abs(__term) > std::abs(__prev)) + break; + __sum += __term; + } + + return std::exp(-__x) * __sum / __x; + } + + + /** + * @brief Return the exponential integral @f$ E_n(x) @f$ + * for large order. + * + * The exponential integral is given by + * \f[ + * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt + * \f] + * + * This is something of an extension. + * + * @param __n The order of the exponential integral function. + * @param __x The argument of the exponential integral function. + * @return The exponential integral. + */ + template + _Tp + __expint_large_n(const unsigned int __n, const _Tp __x) + { + const _Tp __xpn = __x + __n; + const _Tp __xpn2 = __xpn * __xpn; + _Tp __term = _Tp(1); + _Tp __sum = _Tp(1); + for (unsigned int __i = 1; __i <= __n; ++__i) + { + _Tp __prev = __term; + __term *= (__n - 2 * (__i - 1) * __x) / __xpn2; + if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon()) + break; + __sum += __term; + } + + return std::exp(-__x) * __sum / __xpn; + } + + + /** + * @brief Return the exponential integral @f$ E_n(x) @f$. + * + * The exponential integral is given by + * \f[ + * E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt + * \f] + * This is something of an extension. + * + * @param __n The order of the exponential integral function. + * @param __x The argument of the exponential integral function. + * @return The exponential integral. + */ + template + _Tp + __expint(const unsigned int __n, const _Tp __x) + { + // Return NaN on NaN input. + if (__isnan(__x)) + return std::numeric_limits<_Tp>::quiet_NaN(); + else if (__n <= 1 && __x == _Tp(0)) + return std::numeric_limits<_Tp>::infinity(); + else + { + _Tp __E0 = std::exp(__x) / __x; + if (__n == 0) + return __E0; + + _Tp __E1 = __expint_E1(__x); + if (__n == 1) + return __E1; + + if (__x == _Tp(0)) + return _Tp(1) / static_cast<_Tp>(__n - 1); + + _Tp __En = __expint_En_recursion(__n, __x); + + return __En; + } + } + + + /** + * @brief Return the exponential integral @f$ Ei(x) @f$. + * + * The exponential integral is given by + * \f[ + * Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt + * \f] + * + * @param __x The argument of the exponential integral function. + * @return The exponential integral. + */ + template + inline _Tp + __expint(const _Tp __x) + { + if (__isnan(__x)) + return std::numeric_limits<_Tp>::quiet_NaN(); + else + return __expint_Ei(__x); + } + + _GLIBCXX_END_NAMESPACE_VERSION + } // namespace std::tr1::__detail +} +} + +#endif // _GLIBCXX_TR1_EXP_INTEGRAL_TCC