X-Git-Url: http://wagnertech.de/git?a=blobdiff_plain;f=i686-linux-gnu-4.7%2Fusr%2Finclude%2Fc%2B%2B%2F4.7%2Ftr1%2Flegendre_function.tcc;fp=i686-linux-gnu-4.7%2Fusr%2Finclude%2Fc%2B%2B%2F4.7%2Ftr1%2Flegendre_function.tcc;h=db41d4e0ac56ebd41ba4200ebb8c93f55cf52ebd;hb=94df942c2c7bd3457276fe5b7367623cbb8c1302;hp=0000000000000000000000000000000000000000;hpb=4dd7d9155a920895ff7b1cb6b9c9c676aa62000a;p=cross.git diff --git a/i686-linux-gnu-4.7/usr/include/c++/4.7/tr1/legendre_function.tcc b/i686-linux-gnu-4.7/usr/include/c++/4.7/tr1/legendre_function.tcc new file mode 100644 index 0000000..db41d4e --- /dev/null +++ b/i686-linux-gnu-4.7/usr/include/c++/4.7/tr1/legendre_function.tcc @@ -0,0 +1,306 @@ +// Special functions -*- C++ -*- + +// Copyright (C) 2006, 2007, 2008, 2009, 2010 +// Free Software Foundation, Inc. +// +// This file is part of the GNU ISO C++ Library. This library is free +// software; you can redistribute it and/or modify it under the +// terms of the GNU General Public License as published by the +// Free Software Foundation; either version 3, or (at your option) +// any later version. +// +// This library is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU General Public License for more details. +// +// Under Section 7 of GPL version 3, you are granted additional +// permissions described in the GCC Runtime Library Exception, version +// 3.1, as published by the Free Software Foundation. + +// You should have received a copy of the GNU General Public License and +// a copy of the GCC Runtime Library Exception along with this program; +// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see +// . + +/** @file tr1/legendre_function.tcc + * This is an internal header file, included by other library headers. + * Do not attempt to use it directly. @headername{tr1/cmath} + */ + +// +// ISO C++ 14882 TR1: 5.2 Special functions +// + +// Written by Edward Smith-Rowland based on: +// (1) Handbook of Mathematical Functions, +// ed. Milton Abramowitz and Irene A. Stegun, +// Dover Publications, +// Section 8, pp. 331-341 +// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl +// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, +// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), +// 2nd ed, pp. 252-254 + +#ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC +#define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1 + +#include "special_function_util.h" + +namespace std _GLIBCXX_VISIBILITY(default) +{ +namespace tr1 +{ + // [5.2] Special functions + + // Implementation-space details. + namespace __detail + { + _GLIBCXX_BEGIN_NAMESPACE_VERSION + + /** + * @brief Return the Legendre polynomial by recursion on order + * @f$ l @f$. + * + * The Legendre function of @f$ l @f$ and @f$ x @f$, + * @f$ P_l(x) @f$, is defined by: + * @f[ + * P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l} + * @f] + * + * @param l The order of the Legendre polynomial. @f$l >= 0@f$. + * @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$. + */ + template + _Tp + __poly_legendre_p(const unsigned int __l, const _Tp __x) + { + + if ((__x < _Tp(-1)) || (__x > _Tp(+1))) + std::__throw_domain_error(__N("Argument out of range" + " in __poly_legendre_p.")); + else if (__isnan(__x)) + return std::numeric_limits<_Tp>::quiet_NaN(); + else if (__x == +_Tp(1)) + return +_Tp(1); + else if (__x == -_Tp(1)) + return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1)); + else + { + _Tp __p_lm2 = _Tp(1); + if (__l == 0) + return __p_lm2; + + _Tp __p_lm1 = __x; + if (__l == 1) + return __p_lm1; + + _Tp __p_l = 0; + for (unsigned int __ll = 2; __ll <= __l; ++__ll) + { + // This arrangement is supposed to be better for roundoff + // protection, Arfken, 2nd Ed, Eq 12.17a. + __p_l = _Tp(2) * __x * __p_lm1 - __p_lm2 + - (__x * __p_lm1 - __p_lm2) / _Tp(__ll); + __p_lm2 = __p_lm1; + __p_lm1 = __p_l; + } + + return __p_l; + } + } + + + /** + * @brief Return the associated Legendre function by recursion + * on @f$ l @f$. + * + * The associated Legendre function is derived from the Legendre function + * @f$ P_l(x) @f$ by the Rodrigues formula: + * @f[ + * P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x) + * @f] + * + * @param l The order of the associated Legendre function. + * @f$ l >= 0 @f$. + * @param m The order of the associated Legendre function. + * @f$ m <= l @f$. + * @param x The argument of the associated Legendre function. + * @f$ |x| <= 1 @f$. + */ + template + _Tp + __assoc_legendre_p(const unsigned int __l, const unsigned int __m, + const _Tp __x) + { + + if (__x < _Tp(-1) || __x > _Tp(+1)) + std::__throw_domain_error(__N("Argument out of range" + " in __assoc_legendre_p.")); + else if (__m > __l) + std::__throw_domain_error(__N("Degree out of range" + " in __assoc_legendre_p.")); + else if (__isnan(__x)) + return std::numeric_limits<_Tp>::quiet_NaN(); + else if (__m == 0) + return __poly_legendre_p(__l, __x); + else + { + _Tp __p_mm = _Tp(1); + if (__m > 0) + { + // Two square roots seem more accurate more of the time + // than just one. + _Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x); + _Tp __fact = _Tp(1); + for (unsigned int __i = 1; __i <= __m; ++__i) + { + __p_mm *= -__fact * __root; + __fact += _Tp(2); + } + } + if (__l == __m) + return __p_mm; + + _Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm; + if (__l == __m + 1) + return __p_mp1m; + + _Tp __p_lm2m = __p_mm; + _Tp __P_lm1m = __p_mp1m; + _Tp __p_lm = _Tp(0); + for (unsigned int __j = __m + 2; __j <= __l; ++__j) + { + __p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m + - _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m); + __p_lm2m = __P_lm1m; + __P_lm1m = __p_lm; + } + + return __p_lm; + } + } + + + /** + * @brief Return the spherical associated Legendre function. + * + * The spherical associated Legendre function of @f$ l @f$, @f$ m @f$, + * and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where + * @f[ + * Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi} + * \frac{(l-m)!}{(l+m)!}] + * P_l^m(\cos\theta) \exp^{im\phi} + * @f] + * is the spherical harmonic function and @f$ P_l^m(x) @f$ is the + * associated Legendre function. + * + * This function differs from the associated Legendre function by + * argument (@f$x = \cos(\theta)@f$) and by a normalization factor + * but this factor is rather large for large @f$ l @f$ and @f$ m @f$ + * and so this function is stable for larger differences of @f$ l @f$ + * and @f$ m @f$. + * + * @param l The order of the spherical associated Legendre function. + * @f$ l >= 0 @f$. + * @param m The order of the spherical associated Legendre function. + * @f$ m <= l @f$. + * @param theta The radian angle argument of the spherical associated + * Legendre function. + */ + template + _Tp + __sph_legendre(const unsigned int __l, const unsigned int __m, + const _Tp __theta) + { + if (__isnan(__theta)) + return std::numeric_limits<_Tp>::quiet_NaN(); + + const _Tp __x = std::cos(__theta); + + if (__l < __m) + { + std::__throw_domain_error(__N("Bad argument " + "in __sph_legendre.")); + } + else if (__m == 0) + { + _Tp __P = __poly_legendre_p(__l, __x); + _Tp __fact = std::sqrt(_Tp(2 * __l + 1) + / (_Tp(4) * __numeric_constants<_Tp>::__pi())); + __P *= __fact; + return __P; + } + else if (__x == _Tp(1) || __x == -_Tp(1)) + { + // m > 0 here + return _Tp(0); + } + else + { + // m > 0 and |x| < 1 here + + // Starting value for recursion. + // Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) ) + // (-1)^m (1-x^2)^(m/2) / pi^(1/4) + const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1)); + const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3)); +#if _GLIBCXX_USE_C99_MATH_TR1 + const _Tp __lncirc = std::tr1::log1p(-__x * __x); +#else + const _Tp __lncirc = std::log(_Tp(1) - __x * __x); +#endif + // Gamma(m+1/2) / Gamma(m) +#if _GLIBCXX_USE_C99_MATH_TR1 + const _Tp __lnpoch = std::tr1::lgamma(_Tp(__m + _Tp(0.5L))) + - std::tr1::lgamma(_Tp(__m)); +#else + const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L))) + - __log_gamma(_Tp(__m)); +#endif + const _Tp __lnpre_val = + -_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi() + + _Tp(0.5L) * (__lnpoch + __m * __lncirc); + _Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m) + / (_Tp(4) * __numeric_constants<_Tp>::__pi())); + _Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val); + _Tp __y_mp1m = __y_mp1m_factor * __y_mm; + + if (__l == __m) + { + return __y_mm; + } + else if (__l == __m + 1) + { + return __y_mp1m; + } + else + { + _Tp __y_lm = _Tp(0); + + // Compute Y_l^m, l > m+1, upward recursion on l. + for ( int __ll = __m + 2; __ll <= __l; ++__ll) + { + const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m); + const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1); + const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1) + * _Tp(2 * __ll - 1)); + const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1) + / _Tp(2 * __ll - 3)); + __y_lm = (__x * __y_mp1m * __fact1 + - (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m); + __y_mm = __y_mp1m; + __y_mp1m = __y_lm; + } + + return __y_lm; + } + } + } + + _GLIBCXX_END_NAMESPACE_VERSION + } // namespace std::tr1::__detail +} +} + +#endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC