X-Git-Url: http://wagnertech.de/git?a=blobdiff_plain;f=i686-linux-gnu-4.7%2Fusr%2Finclude%2Ftgmath.h;fp=i686-linux-gnu-4.7%2Fusr%2Finclude%2Ftgmath.h;h=a709a59d0fa1168ef03349561169fc5bd27d65aa;hb=94df942c2c7bd3457276fe5b7367623cbb8c1302;hp=0000000000000000000000000000000000000000;hpb=4dd7d9155a920895ff7b1cb6b9c9c676aa62000a;p=cross.git diff --git a/i686-linux-gnu-4.7/usr/include/tgmath.h b/i686-linux-gnu-4.7/usr/include/tgmath.h new file mode 100644 index 0000000..a709a59 --- /dev/null +++ b/i686-linux-gnu-4.7/usr/include/tgmath.h @@ -0,0 +1,764 @@ +/* Copyright (C) 1997-2018 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + . */ + +/* + * ISO C99 Standard: 7.22 Type-generic math + */ + +#ifndef _TGMATH_H +#define _TGMATH_H 1 + +#define __GLIBC_INTERNAL_STARTING_HEADER_IMPLEMENTATION +#include + +/* Include the needed headers. */ +#include +#include +#include + + +/* There are two variant implementations of type-generic macros in + this file: one for GCC 8 and later, using __builtin_tgmath and + where each macro expands each of its arguments only once, and one + for older GCC, using other compiler extensions but with macros + expanding their arguments many times (so resulting in exponential + blowup of the size of expansions when calls to such macros are + nested inside arguments to such macros). */ + +#define __HAVE_BUILTIN_TGMATH __GNUC_PREREQ (8, 0) + +#if __GNUC_PREREQ (2, 7) + +# if __HAVE_BUILTIN_TGMATH + +# if __HAVE_FLOAT16 && __GLIBC_USE (IEC_60559_TYPES_EXT) +# define __TG_F16_ARG(X) X ## f16, +# else +# define __TG_F16_ARG(X) +# endif +# if __HAVE_FLOAT32 && __GLIBC_USE (IEC_60559_TYPES_EXT) +# define __TG_F32_ARG(X) X ## f32, +# else +# define __TG_F32_ARG(X) +# endif +# if __HAVE_FLOAT64 && __GLIBC_USE (IEC_60559_TYPES_EXT) +# define __TG_F64_ARG(X) X ## f64, +# else +# define __TG_F64_ARG(X) +# endif +# if __HAVE_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT) +# define __TG_F128_ARG(X) X ## f128, +# else +# define __TG_F128_ARG(X) +# endif +# if __HAVE_FLOAT32X && __GLIBC_USE (IEC_60559_TYPES_EXT) +# define __TG_F32X_ARG(X) X ## f32x, +# else +# define __TG_F32X_ARG(X) +# endif +# if __HAVE_FLOAT64X && __GLIBC_USE (IEC_60559_TYPES_EXT) +# define __TG_F64X_ARG(X) X ## f64x, +# else +# define __TG_F64X_ARG(X) +# endif +# if __HAVE_FLOAT128X && __GLIBC_USE (IEC_60559_TYPES_EXT) +# define __TG_F128X_ARG(X) X ## f128x, +# else +# define __TG_F128X_ARG(X) +# endif + +# define __TGMATH_FUNCS(X) X ## f, X, X ## l, \ + __TG_F16_ARG (X) __TG_F32_ARG (X) __TG_F64_ARG (X) __TG_F128_ARG (X) \ + __TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X) +# define __TGMATH_RCFUNCS(F, C) __TGMATH_FUNCS (F) __TGMATH_FUNCS (C) +# define __TGMATH_1(F, X) __builtin_tgmath (__TGMATH_FUNCS (F) (X)) +# define __TGMATH_2(F, X, Y) __builtin_tgmath (__TGMATH_FUNCS (F) (X), (Y)) +# define __TGMATH_2STD(F, X, Y) __builtin_tgmath (F ## f, F, F ## l, (X), (Y)) +# define __TGMATH_3(F, X, Y, Z) __builtin_tgmath (__TGMATH_FUNCS (F) \ + (X), (Y), (Z)) +# define __TGMATH_1C(F, C, X) __builtin_tgmath (__TGMATH_RCFUNCS (F, C) (X)) +# define __TGMATH_2C(F, C, X, Y) __builtin_tgmath (__TGMATH_RCFUNCS (F, C) \ + (X), (Y)) + +# else /* !__HAVE_BUILTIN_TGMATH. */ + +# ifdef __NO_LONG_DOUBLE_MATH +# define __tgml(fct) fct +# else +# define __tgml(fct) fct ## l +# endif + +/* __floating_type expands to 1 if TYPE is a floating type (including + complex floating types), 0 if TYPE is an integer type (including + complex integer types). __real_integer_type expands to 1 if TYPE + is a real integer type. __complex_integer_type expands to 1 if + TYPE is a complex integer type. All these macros expand to integer + constant expressions. All these macros can assume their argument + has an arithmetic type (not vector, decimal floating-point or + fixed-point), valid to pass to tgmath.h macros. */ +# if __GNUC_PREREQ (3, 1) +/* __builtin_classify_type expands to an integer constant expression + in GCC 3.1 and later. Default conversions applied to the argument + of __builtin_classify_type mean it always returns 1 for real + integer types rather than ever returning different values for + character, boolean or enumerated types. */ +# define __floating_type(type) \ + (__builtin_classify_type (__real__ ((type) 0)) == 8) +# define __real_integer_type(type) \ + (__builtin_classify_type ((type) 0) == 1) +# define __complex_integer_type(type) \ + (__builtin_classify_type ((type) 0) == 9 \ + && __builtin_classify_type (__real__ ((type) 0)) == 1) +# else +/* GCC versions predating __builtin_classify_type are also looser on + what counts as an integer constant expression. */ +# define __floating_type(type) (((type) 1.25) != 1) +# define __real_integer_type(type) (((type) (1.25 + _Complex_I)) == 1) +# define __complex_integer_type(type) \ + (((type) (1.25 + _Complex_I)) == (1 + _Complex_I)) +# endif + +/* Whether an expression (of arithmetic type) has a real type. */ +# define __expr_is_real(E) (__builtin_classify_type (E) != 9) + +/* The tgmath real type for T, where E is 0 if T is an integer type + and 1 for a floating type. If T has a complex type, it is + unspecified whether the return type is real or complex (but it has + the correct corresponding real type). */ +# define __tgmath_real_type_sub(T, E) \ + __typeof__ (*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0 \ + : (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0)) + +/* The tgmath real type of EXPR. */ +# define __tgmath_real_type(expr) \ + __tgmath_real_type_sub (__typeof__ ((__typeof__ (+(expr))) 0), \ + __floating_type (__typeof__ (+(expr)))) + +/* The tgmath complex type for T, where E1 is 1 if T has a floating + type and 0 otherwise, E2 is 1 if T has a real integer type and 0 + otherwise, and E3 is 1 if T has a complex type and 0 otherwise. */ +# define __tgmath_complex_type_sub(T, E1, E2, E3) \ + __typeof__ (*(0 \ + ? (__typeof__ (0 ? (T *) 0 : (void *) (!(E1)))) 0 \ + : (__typeof__ (0 \ + ? (__typeof__ (0 \ + ? (double *) 0 \ + : (void *) (!(E2)))) 0 \ + : (__typeof__ (0 \ + ? (_Complex double *) 0 \ + : (void *) (!(E3)))) 0)) 0)) + +/* The tgmath complex type of EXPR. */ +# define __tgmath_complex_type(expr) \ + __tgmath_complex_type_sub (__typeof__ ((__typeof__ (+(expr))) 0), \ + __floating_type (__typeof__ (+(expr))), \ + __real_integer_type (__typeof__ (+(expr))), \ + __complex_integer_type (__typeof__ (+(expr)))) + +# if (__HAVE_DISTINCT_FLOAT16 \ + || __HAVE_DISTINCT_FLOAT32 \ + || __HAVE_DISTINCT_FLOAT64 \ + || __HAVE_DISTINCT_FLOAT32X \ + || __HAVE_DISTINCT_FLOAT64X \ + || __HAVE_DISTINCT_FLOAT128X) +# error "Unsupported _FloatN or _FloatNx types for ." +# endif + +/* Expand to text that checks if ARG_COMB has type _Float128, and if + so calls the appropriately suffixed FCT (which may include a cast), + or FCT and CFCT for complex functions, with arguments ARG_CALL. */ +# if __HAVE_DISTINCT_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT) +# if (!__HAVE_FLOAT64X \ + || __HAVE_FLOAT64X_LONG_DOUBLE \ + || !__HAVE_FLOATN_NOT_TYPEDEF) +# define __TGMATH_F128(arg_comb, fct, arg_call) \ + __builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \ + ? fct ## f128 arg_call : +# define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) \ + __builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \ + ? (__expr_is_real (arg_comb) \ + ? fct ## f128 arg_call \ + : cfct ## f128 arg_call) : +# else +/* _Float64x is a distinct type at the C language level, which must be + handled like _Float128. */ +# define __TGMATH_F128(arg_comb, fct, arg_call) \ + (__builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \ + || __builtin_types_compatible_p (__typeof (+(arg_comb)), _Float64x)) \ + ? fct ## f128 arg_call : +# define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) \ + (__builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \ + || __builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), \ + _Float64x)) \ + ? (__expr_is_real (arg_comb) \ + ? fct ## f128 arg_call \ + : cfct ## f128 arg_call) : +# endif +# else +# define __TGMATH_F128(arg_comb, fct, arg_call) /* Nothing. */ +# define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) /* Nothing. */ +# endif + +# endif /* !__HAVE_BUILTIN_TGMATH. */ + +/* We have two kinds of generic macros: to support functions which are + only defined on real valued parameters and those which are defined + for complex functions as well. */ +# if __HAVE_BUILTIN_TGMATH + +# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) __TGMATH_1 (Fct, (Val)) +# define __TGMATH_UNARY_REAL_RET_ONLY(Val, Fct) __TGMATH_1 (Fct, (Val)) +# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \ + __TGMATH_2 (Fct, (Val1), (Val2)) +# define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct) \ + __TGMATH_2STD (Fct, (Val1), (Val2)) +# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \ + __TGMATH_2 (Fct, (Val1), (Val2)) +# define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \ + __TGMATH_2STD (Fct, (Val1), (Val2)) +# define __TGMATH_BINARY_REAL_RET_ONLY(Val1, Val2, Fct) \ + __TGMATH_2 (Fct, (Val1), (Val2)) +# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \ + __TGMATH_3 (Fct, (Val1), (Val2), (Val3)) +# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \ + __TGMATH_3 (Fct, (Val1), (Val2), (Val3)) +# define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \ + __TGMATH_3 (Fct, (Val1), (Val2), (Val3)) +# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \ + __TGMATH_1C (Fct, Cfct, (Val)) +# define __TGMATH_UNARY_IMAG(Val, Cfct) __TGMATH_1 (Cfct, (Val)) +# define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \ + __TGMATH_1C (Fct, Cfct, (Val)) +# define __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME(Val, Cfct) \ + __TGMATH_1 (Cfct, (Val)) +# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \ + __TGMATH_2C (Fct, Cfct, (Val1), (Val2)) + +# else /* !__HAVE_BUILTIN_TGMATH. */ + +# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \ + (__extension__ ((sizeof (+(Val)) == sizeof (double) \ + || __builtin_classify_type (Val) != 8) \ + ? (__tgmath_real_type (Val)) Fct (Val) \ + : (sizeof (+(Val)) == sizeof (float)) \ + ? (__tgmath_real_type (Val)) Fct##f (Val) \ + : __TGMATH_F128 ((Val), (__tgmath_real_type (Val)) Fct, \ + (Val)) \ + (__tgmath_real_type (Val)) __tgml(Fct) (Val))) + +# define __TGMATH_UNARY_REAL_RET_ONLY(Val, Fct) \ + (__extension__ ((sizeof (+(Val)) == sizeof (double) \ + || __builtin_classify_type (Val) != 8) \ + ? Fct (Val) \ + : (sizeof (+(Val)) == sizeof (float)) \ + ? Fct##f (Val) \ + : __TGMATH_F128 ((Val), Fct, (Val)) \ + __tgml(Fct) (Val))) + +# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \ + (__extension__ ((sizeof (+(Val1)) == sizeof (double) \ + || __builtin_classify_type (Val1) != 8) \ + ? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \ + : (sizeof (+(Val1)) == sizeof (float)) \ + ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \ + : __TGMATH_F128 ((Val1), (__tgmath_real_type (Val1)) Fct, \ + (Val1, Val2)) \ + (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2))) + +# define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct) \ + (__extension__ ((sizeof (+(Val1)) == sizeof (double) \ + || __builtin_classify_type (Val1) != 8) \ + ? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \ + : (sizeof (+(Val1)) == sizeof (float)) \ + ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \ + : (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2))) + +# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \ + (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \ + && __builtin_classify_type ((Val1) + (Val2)) == 8) \ + ? __TGMATH_F128 ((Val1) + (Val2), \ + (__typeof \ + ((__tgmath_real_type (Val1)) 0 \ + + (__tgmath_real_type (Val2)) 0)) Fct, \ + (Val1, Val2)) \ + (__typeof ((__tgmath_real_type (Val1)) 0 \ + + (__tgmath_real_type (Val2)) 0)) \ + __tgml(Fct) (Val1, Val2) \ + : (sizeof (+(Val1)) == sizeof (double) \ + || sizeof (+(Val2)) == sizeof (double) \ + || __builtin_classify_type (Val1) != 8 \ + || __builtin_classify_type (Val2) != 8) \ + ? (__typeof ((__tgmath_real_type (Val1)) 0 \ + + (__tgmath_real_type (Val2)) 0)) \ + Fct (Val1, Val2) \ + : (__typeof ((__tgmath_real_type (Val1)) 0 \ + + (__tgmath_real_type (Val2)) 0)) \ + Fct##f (Val1, Val2))) + +# define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \ + (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \ + && __builtin_classify_type ((Val1) + (Val2)) == 8) \ + ? (__typeof ((__tgmath_real_type (Val1)) 0 \ + + (__tgmath_real_type (Val2)) 0)) \ + __tgml(Fct) (Val1, Val2) \ + : (sizeof (+(Val1)) == sizeof (double) \ + || sizeof (+(Val2)) == sizeof (double) \ + || __builtin_classify_type (Val1) != 8 \ + || __builtin_classify_type (Val2) != 8) \ + ? (__typeof ((__tgmath_real_type (Val1)) 0 \ + + (__tgmath_real_type (Val2)) 0)) \ + Fct (Val1, Val2) \ + : (__typeof ((__tgmath_real_type (Val1)) 0 \ + + (__tgmath_real_type (Val2)) 0)) \ + Fct##f (Val1, Val2))) + +# define __TGMATH_BINARY_REAL_RET_ONLY(Val1, Val2, Fct) \ + (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \ + && __builtin_classify_type ((Val1) + (Val2)) == 8) \ + ? __TGMATH_F128 ((Val1) + (Val2), Fct, (Val1, Val2)) \ + __tgml(Fct) (Val1, Val2) \ + : (sizeof (+(Val1)) == sizeof (double) \ + || sizeof (+(Val2)) == sizeof (double) \ + || __builtin_classify_type (Val1) != 8 \ + || __builtin_classify_type (Val2) != 8) \ + ? Fct (Val1, Val2) \ + : Fct##f (Val1, Val2))) + +# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \ + (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \ + && __builtin_classify_type ((Val1) + (Val2)) == 8) \ + ? __TGMATH_F128 ((Val1) + (Val2), \ + (__typeof \ + ((__tgmath_real_type (Val1)) 0 \ + + (__tgmath_real_type (Val2)) 0)) Fct, \ + (Val1, Val2, Val3)) \ + (__typeof ((__tgmath_real_type (Val1)) 0 \ + + (__tgmath_real_type (Val2)) 0)) \ + __tgml(Fct) (Val1, Val2, Val3) \ + : (sizeof (+(Val1)) == sizeof (double) \ + || sizeof (+(Val2)) == sizeof (double) \ + || __builtin_classify_type (Val1) != 8 \ + || __builtin_classify_type (Val2) != 8) \ + ? (__typeof ((__tgmath_real_type (Val1)) 0 \ + + (__tgmath_real_type (Val2)) 0)) \ + Fct (Val1, Val2, Val3) \ + : (__typeof ((__tgmath_real_type (Val1)) 0 \ + + (__tgmath_real_type (Val2)) 0)) \ + Fct##f (Val1, Val2, Val3))) + +# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \ + (__extension__ ((sizeof ((Val1) + (Val2) + (Val3)) > sizeof (double) \ + && __builtin_classify_type ((Val1) + (Val2) + (Val3)) \ + == 8) \ + ? __TGMATH_F128 ((Val1) + (Val2) + (Val3), \ + (__typeof \ + ((__tgmath_real_type (Val1)) 0 \ + + (__tgmath_real_type (Val2)) 0 \ + + (__tgmath_real_type (Val3)) 0)) Fct, \ + (Val1, Val2, Val3)) \ + (__typeof ((__tgmath_real_type (Val1)) 0 \ + + (__tgmath_real_type (Val2)) 0 \ + + (__tgmath_real_type (Val3)) 0)) \ + __tgml(Fct) (Val1, Val2, Val3) \ + : (sizeof (+(Val1)) == sizeof (double) \ + || sizeof (+(Val2)) == sizeof (double) \ + || sizeof (+(Val3)) == sizeof (double) \ + || __builtin_classify_type (Val1) != 8 \ + || __builtin_classify_type (Val2) != 8 \ + || __builtin_classify_type (Val3) != 8) \ + ? (__typeof ((__tgmath_real_type (Val1)) 0 \ + + (__tgmath_real_type (Val2)) 0 \ + + (__tgmath_real_type (Val3)) 0)) \ + Fct (Val1, Val2, Val3) \ + : (__typeof ((__tgmath_real_type (Val1)) 0 \ + + (__tgmath_real_type (Val2)) 0 \ + + (__tgmath_real_type (Val3)) 0)) \ + Fct##f (Val1, Val2, Val3))) + +# define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \ + (__extension__ ((sizeof (+(Val1)) == sizeof (double) \ + || __builtin_classify_type (Val1) != 8) \ + ? Fct (Val1, Val2, Val3) \ + : (sizeof (+(Val1)) == sizeof (float)) \ + ? Fct##f (Val1, Val2, Val3) \ + : __TGMATH_F128 ((Val1), Fct, (Val1, Val2, Val3)) \ + __tgml(Fct) (Val1, Val2, Val3))) + +/* XXX This definition has to be changed as soon as the compiler understands + the imaginary keyword. */ +# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \ + (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \ + || __builtin_classify_type (__real__ (Val)) != 8) \ + ? (__expr_is_real (Val) \ + ? (__tgmath_complex_type (Val)) Fct (Val) \ + : (__tgmath_complex_type (Val)) Cfct (Val)) \ + : (sizeof (+__real__ (Val)) == sizeof (float)) \ + ? (__expr_is_real (Val) \ + ? (__tgmath_complex_type (Val)) Fct##f (Val) \ + : (__tgmath_complex_type (Val)) Cfct##f (Val)) \ + : __TGMATH_CF128 ((Val), \ + (__tgmath_complex_type (Val)) Fct, \ + (__tgmath_complex_type (Val)) Cfct, \ + (Val)) \ + (__expr_is_real (Val) \ + ? (__tgmath_complex_type (Val)) __tgml(Fct) (Val) \ + : (__tgmath_complex_type (Val)) __tgml(Cfct) (Val)))) + +# define __TGMATH_UNARY_IMAG(Val, Cfct) \ + (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \ + || __builtin_classify_type (__real__ (Val)) != 8) \ + ? (__typeof__ ((__tgmath_real_type (Val)) 0 \ + + _Complex_I)) Cfct (Val) \ + : (sizeof (+__real__ (Val)) == sizeof (float)) \ + ? (__typeof__ ((__tgmath_real_type (Val)) 0 \ + + _Complex_I)) Cfct##f (Val) \ + : __TGMATH_F128 (__real__ (Val), \ + (__typeof__ \ + ((__tgmath_real_type (Val)) 0 \ + + _Complex_I)) Cfct, (Val)) \ + (__typeof__ ((__tgmath_real_type (Val)) 0 \ + + _Complex_I)) __tgml(Cfct) (Val))) + +/* XXX This definition has to be changed as soon as the compiler understands + the imaginary keyword. */ +# define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \ + (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \ + || __builtin_classify_type (__real__ (Val)) != 8) \ + ? (__expr_is_real (Val) \ + ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ + Fct (Val) \ + : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ + Cfct (Val)) \ + : (sizeof (+__real__ (Val)) == sizeof (float)) \ + ? (__expr_is_real (Val) \ + ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ + Fct##f (Val) \ + : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ + Cfct##f (Val)) \ + : __TGMATH_CF128 ((Val), \ + (__typeof__ \ + (__real__ \ + (__tgmath_real_type (Val)) 0)) Fct, \ + (__typeof__ \ + (__real__ \ + (__tgmath_real_type (Val)) 0)) Cfct, \ + (Val)) \ + (__expr_is_real (Val) \ + ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0)) \ + __tgml(Fct) (Val) \ + : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0)) \ + __tgml(Cfct) (Val)))) +# define __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME(Val, Cfct) \ + __TGMATH_UNARY_REAL_IMAG_RET_REAL ((Val), Cfct, Cfct) + +/* XXX This definition has to be changed as soon as the compiler understands + the imaginary keyword. */ +# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \ + (__extension__ ((sizeof (__real__ (Val1) \ + + __real__ (Val2)) > sizeof (double) \ + && __builtin_classify_type (__real__ (Val1) \ + + __real__ (Val2)) == 8) \ + ? __TGMATH_CF128 ((Val1) + (Val2), \ + (__typeof \ + ((__tgmath_complex_type (Val1)) 0 \ + + (__tgmath_complex_type (Val2)) 0)) \ + Fct, \ + (__typeof \ + ((__tgmath_complex_type (Val1)) 0 \ + + (__tgmath_complex_type (Val2)) 0)) \ + Cfct, \ + (Val1, Val2)) \ + (__expr_is_real ((Val1) + (Val2)) \ + ? (__typeof ((__tgmath_complex_type (Val1)) 0 \ + + (__tgmath_complex_type (Val2)) 0)) \ + __tgml(Fct) (Val1, Val2) \ + : (__typeof ((__tgmath_complex_type (Val1)) 0 \ + + (__tgmath_complex_type (Val2)) 0)) \ + __tgml(Cfct) (Val1, Val2)) \ + : (sizeof (+__real__ (Val1)) == sizeof (double) \ + || sizeof (+__real__ (Val2)) == sizeof (double) \ + || __builtin_classify_type (__real__ (Val1)) != 8 \ + || __builtin_classify_type (__real__ (Val2)) != 8) \ + ? (__expr_is_real ((Val1) + (Val2)) \ + ? (__typeof ((__tgmath_complex_type (Val1)) 0 \ + + (__tgmath_complex_type (Val2)) 0)) \ + Fct (Val1, Val2) \ + : (__typeof ((__tgmath_complex_type (Val1)) 0 \ + + (__tgmath_complex_type (Val2)) 0)) \ + Cfct (Val1, Val2)) \ + : (__expr_is_real ((Val1) + (Val2)) \ + ? (__typeof ((__tgmath_complex_type (Val1)) 0 \ + + (__tgmath_complex_type (Val2)) 0)) \ + Fct##f (Val1, Val2) \ + : (__typeof ((__tgmath_complex_type (Val1)) 0 \ + + (__tgmath_complex_type (Val2)) 0)) \ + Cfct##f (Val1, Val2)))) +# endif /* !__HAVE_BUILTIN_TGMATH. */ +#else +# error "Unsupported compiler; you cannot use " +#endif + + +/* Unary functions defined for real and complex values. */ + + +/* Trigonometric functions. */ + +/* Arc cosine of X. */ +#define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos) +/* Arc sine of X. */ +#define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin) +/* Arc tangent of X. */ +#define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan) +/* Arc tangent of Y/X. */ +#define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2) + +/* Cosine of X. */ +#define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos) +/* Sine of X. */ +#define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin) +/* Tangent of X. */ +#define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan) + + +/* Hyperbolic functions. */ + +/* Hyperbolic arc cosine of X. */ +#define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh) +/* Hyperbolic arc sine of X. */ +#define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh) +/* Hyperbolic arc tangent of X. */ +#define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh) + +/* Hyperbolic cosine of X. */ +#define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh) +/* Hyperbolic sine of X. */ +#define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh) +/* Hyperbolic tangent of X. */ +#define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh) + + +/* Exponential and logarithmic functions. */ + +/* Exponential function of X. */ +#define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp) + +/* Break VALUE into a normalized fraction and an integral power of 2. */ +#define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp) + +/* X times (two to the EXP power). */ +#define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp) + +/* Natural logarithm of X. */ +#define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog) + +/* Base-ten logarithm of X. */ +#ifdef __USE_GNU +# define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, clog10) +#else +# define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10) +#endif + +/* Return exp(X) - 1. */ +#define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1) + +/* Return log(1 + X). */ +#define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p) + +/* Return the base 2 signed integral exponent of X. */ +#define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb) + +/* Compute base-2 exponential of X. */ +#define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2) + +/* Compute base-2 logarithm of X. */ +#define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2) + + +/* Power functions. */ + +/* Return X to the Y power. */ +#define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow) + +/* Return the square root of X. */ +#define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt) + +/* Return `sqrt(X*X + Y*Y)'. */ +#define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot) + +/* Return the cube root of X. */ +#define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt) + + +/* Nearest integer, absolute value, and remainder functions. */ + +/* Smallest integral value not less than X. */ +#define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil) + +/* Absolute value of X. */ +#define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs) + +/* Largest integer not greater than X. */ +#define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor) + +/* Floating-point modulo remainder of X/Y. */ +#define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod) + +/* Round X to integral valuein floating-point format using current + rounding direction, but do not raise inexact exception. */ +#define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint) + +/* Round X to nearest integral value, rounding halfway cases away from + zero. */ +#define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round) + +/* Round X to the integral value in floating-point format nearest but + not larger in magnitude. */ +#define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc) + +/* Compute remainder of X and Y and put in *QUO a value with sign of x/y + and magnitude congruent `mod 2^n' to the magnitude of the integral + quotient x/y, with n >= 3. */ +#define remquo(Val1, Val2, Val3) \ + __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo) + +/* Round X to nearest integral value according to current rounding + direction. */ +#define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lrint) +#define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llrint) + +/* Round X to nearest integral value, rounding halfway cases away from + zero. */ +#define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lround) +#define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llround) + + +/* Return X with its signed changed to Y's. */ +#define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign) + +/* Error and gamma functions. */ +#define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf) +#define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc) +#define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma) +#define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma) + + +/* Return the integer nearest X in the direction of the + prevailing rounding mode. */ +#define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint) + +#if __GLIBC_USE (IEC_60559_BFP_EXT) +/* Return X - epsilon. */ +# define nextdown(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextdown) +/* Return X + epsilon. */ +# define nextup(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextup) +#endif + +/* Return X + epsilon if X < Y, X - epsilon if X > Y. */ +#define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter) +#define nexttoward(Val1, Val2) \ + __TGMATH_BINARY_FIRST_REAL_STD_ONLY (Val1, Val2, nexttoward) + +/* Return the remainder of integer divison X / Y with infinite precision. */ +#define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder) + +/* Return X times (2 to the Nth power). */ +#ifdef __USE_MISC +# define scalb(Val1, Val2) __TGMATH_BINARY_REAL_STD_ONLY (Val1, Val2, scalb) +#endif + +/* Return X times (2 to the Nth power). */ +#define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn) + +/* Return X times (2 to the Nth power). */ +#define scalbln(Val1, Val2) \ + __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln) + +/* Return the binary exponent of X, which must be nonzero. */ +#define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, ilogb) + + +/* Return positive difference between X and Y. */ +#define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim) + +/* Return maximum numeric value from X and Y. */ +#define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax) + +/* Return minimum numeric value from X and Y. */ +#define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin) + + +/* Multiply-add function computed as a ternary operation. */ +#define fma(Val1, Val2, Val3) \ + __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma) + +#if __GLIBC_USE (IEC_60559_BFP_EXT) +/* Round X to nearest integer value, rounding halfway cases to even. */ +# define roundeven(Val) __TGMATH_UNARY_REAL_ONLY (Val, roundeven) + +# define fromfp(Val1, Val2, Val3) \ + __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfp) + +# define ufromfp(Val1, Val2, Val3) \ + __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfp) + +# define fromfpx(Val1, Val2, Val3) \ + __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfpx) + +# define ufromfpx(Val1, Val2, Val3) \ + __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfpx) + +/* Like ilogb, but returning long int. */ +# define llogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llogb) + +/* Return value with maximum magnitude. */ +# define fmaxmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaxmag) + +/* Return value with minimum magnitude. */ +# define fminmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminmag) + +/* Total order operation. */ +# define totalorder(Val1, Val2) \ + __TGMATH_BINARY_REAL_RET_ONLY (Val1, Val2, totalorder) + +/* Total order operation on absolute values. */ +# define totalordermag(Val1, Val2) \ + __TGMATH_BINARY_REAL_RET_ONLY (Val1, Val2, totalordermag) +#endif + + +/* Absolute value, conjugates, and projection. */ + +/* Argument value of Z. */ +#define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, carg) + +/* Complex conjugate of Z. */ +#define conj(Val) __TGMATH_UNARY_IMAG (Val, conj) + +/* Projection of Z onto the Riemann sphere. */ +#define cproj(Val) __TGMATH_UNARY_IMAG (Val, cproj) + + +/* Decomposing complex values. */ + +/* Imaginary part of Z. */ +#define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, cimag) + +/* Real part of Z. */ +#define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, creal) + +#endif /* tgmath.h */