cpp-d1064d
[cross.git] / i686-linux-gnu-4.7 / usr / include / c++ / 4.7 / bits / stl_function.h
diff --git a/i686-linux-gnu-4.7/usr/include/c++/4.7/bits/stl_function.h b/i686-linux-gnu-4.7/usr/include/c++/4.7/bits/stl_function.h
new file mode 100644 (file)
index 0000000..33d5e70
--- /dev/null
@@ -0,0 +1,744 @@
+// Functor implementations -*- C++ -*-
+
+// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009, 2010,
+// 2011, 2012
+// Free Software Foundation, Inc.
+//
+// This file is part of the GNU ISO C++ Library.  This library is free
+// software; you can redistribute it and/or modify it under the
+// terms of the GNU General Public License as published by the
+// Free Software Foundation; either version 3, or (at your option)
+// any later version.
+
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+
+// Under Section 7 of GPL version 3, you are granted additional
+// permissions described in the GCC Runtime Library Exception, version
+// 3.1, as published by the Free Software Foundation.
+
+// You should have received a copy of the GNU General Public License and
+// a copy of the GCC Runtime Library Exception along with this program;
+// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
+// <http://www.gnu.org/licenses/>.
+
+/*
+ *
+ * Copyright (c) 1994
+ * Hewlett-Packard Company
+ *
+ * Permission to use, copy, modify, distribute and sell this software
+ * and its documentation for any purpose is hereby granted without fee,
+ * provided that the above copyright notice appear in all copies and
+ * that both that copyright notice and this permission notice appear
+ * in supporting documentation.  Hewlett-Packard Company makes no
+ * representations about the suitability of this software for any
+ * purpose.  It is provided "as is" without express or implied warranty.
+ *
+ *
+ * Copyright (c) 1996-1998
+ * Silicon Graphics Computer Systems, Inc.
+ *
+ * Permission to use, copy, modify, distribute and sell this software
+ * and its documentation for any purpose is hereby granted without fee,
+ * provided that the above copyright notice appear in all copies and
+ * that both that copyright notice and this permission notice appear
+ * in supporting documentation.  Silicon Graphics makes no
+ * representations about the suitability of this software for any
+ * purpose.  It is provided "as is" without express or implied warranty.
+ */
+
+/** @file bits/stl_function.h
+ *  This is an internal header file, included by other library headers.
+ *  Do not attempt to use it directly. @headername{functional}
+ */
+
+#ifndef _STL_FUNCTION_H
+#define _STL_FUNCTION_H 1
+
+namespace std _GLIBCXX_VISIBILITY(default)
+{
+_GLIBCXX_BEGIN_NAMESPACE_VERSION
+
+  // 20.3.1 base classes
+  /** @defgroup functors Function Objects
+   * @ingroup utilities
+   *
+   *  Function objects, or @e functors, are objects with an @c operator()
+   *  defined and accessible.  They can be passed as arguments to algorithm
+   *  templates and used in place of a function pointer.  Not only is the
+   *  resulting expressiveness of the library increased, but the generated
+   *  code can be more efficient than what you might write by hand.  When we
+   *  refer to @a functors, then, generally we include function pointers in
+   *  the description as well.
+   *
+   *  Often, functors are only created as temporaries passed to algorithm
+   *  calls, rather than being created as named variables.
+   *
+   *  Two examples taken from the standard itself follow.  To perform a
+   *  by-element addition of two vectors @c a and @c b containing @c double,
+   *  and put the result in @c a, use
+   *  \code
+   *  transform (a.begin(), a.end(), b.begin(), a.begin(), plus<double>());
+   *  \endcode
+   *  To negate every element in @c a, use
+   *  \code
+   *  transform(a.begin(), a.end(), a.begin(), negate<double>());
+   *  \endcode
+   *  The addition and negation functions will be inlined directly.
+   *
+   *  The standard functors are derived from structs named @c unary_function
+   *  and @c binary_function.  These two classes contain nothing but typedefs,
+   *  to aid in generic (template) programming.  If you write your own
+   *  functors, you might consider doing the same.
+   *
+   *  @{
+   */
+  /**
+   *  This is one of the @link functors functor base classes@endlink.
+   */
+  template<typename _Arg, typename _Result>
+    struct unary_function
+    {
+      /// @c argument_type is the type of the argument
+      typedef _Arg     argument_type;   
+
+      /// @c result_type is the return type
+      typedef _Result  result_type;  
+    };
+
+  /**
+   *  This is one of the @link functors functor base classes@endlink.
+   */
+  template<typename _Arg1, typename _Arg2, typename _Result>
+    struct binary_function
+    {
+      /// @c first_argument_type is the type of the first argument
+      typedef _Arg1    first_argument_type; 
+
+      /// @c second_argument_type is the type of the second argument
+      typedef _Arg2    second_argument_type;
+
+      /// @c result_type is the return type
+      typedef _Result  result_type;
+    };
+  /** @}  */
+
+  // 20.3.2 arithmetic
+  /** @defgroup arithmetic_functors Arithmetic Classes
+   * @ingroup functors
+   *
+   *  Because basic math often needs to be done during an algorithm,
+   *  the library provides functors for those operations.  See the
+   *  documentation for @link functors the base classes@endlink
+   *  for examples of their use.
+   *
+   *  @{
+   */
+  /// One of the @link arithmetic_functors math functors@endlink.
+  template<typename _Tp>
+    struct plus : public binary_function<_Tp, _Tp, _Tp>
+    {
+      _Tp
+      operator()(const _Tp& __x, const _Tp& __y) const
+      { return __x + __y; }
+    };
+
+  /// One of the @link arithmetic_functors math functors@endlink.
+  template<typename _Tp>
+    struct minus : public binary_function<_Tp, _Tp, _Tp>
+    {
+      _Tp
+      operator()(const _Tp& __x, const _Tp& __y) const
+      { return __x - __y; }
+    };
+
+  /// One of the @link arithmetic_functors math functors@endlink.
+  template<typename _Tp>
+    struct multiplies : public binary_function<_Tp, _Tp, _Tp>
+    {
+      _Tp
+      operator()(const _Tp& __x, const _Tp& __y) const
+      { return __x * __y; }
+    };
+
+  /// One of the @link arithmetic_functors math functors@endlink.
+  template<typename _Tp>
+    struct divides : public binary_function<_Tp, _Tp, _Tp>
+    {
+      _Tp
+      operator()(const _Tp& __x, const _Tp& __y) const
+      { return __x / __y; }
+    };
+
+  /// One of the @link arithmetic_functors math functors@endlink.
+  template<typename _Tp>
+    struct modulus : public binary_function<_Tp, _Tp, _Tp>
+    {
+      _Tp
+      operator()(const _Tp& __x, const _Tp& __y) const
+      { return __x % __y; }
+    };
+
+  /// One of the @link arithmetic_functors math functors@endlink.
+  template<typename _Tp>
+    struct negate : public unary_function<_Tp, _Tp>
+    {
+      _Tp
+      operator()(const _Tp& __x) const
+      { return -__x; }
+    };
+  /** @}  */
+
+  // 20.3.3 comparisons
+  /** @defgroup comparison_functors Comparison Classes
+   * @ingroup functors
+   *
+   *  The library provides six wrapper functors for all the basic comparisons
+   *  in C++, like @c <.
+   *
+   *  @{
+   */
+  /// One of the @link comparison_functors comparison functors@endlink.
+  template<typename _Tp>
+    struct equal_to : public binary_function<_Tp, _Tp, bool>
+    {
+      bool
+      operator()(const _Tp& __x, const _Tp& __y) const
+      { return __x == __y; }
+    };
+
+  /// One of the @link comparison_functors comparison functors@endlink.
+  template<typename _Tp>
+    struct not_equal_to : public binary_function<_Tp, _Tp, bool>
+    {
+      bool
+      operator()(const _Tp& __x, const _Tp& __y) const
+      { return __x != __y; }
+    };
+
+  /// One of the @link comparison_functors comparison functors@endlink.
+  template<typename _Tp>
+    struct greater : public binary_function<_Tp, _Tp, bool>
+    {
+      bool
+      operator()(const _Tp& __x, const _Tp& __y) const
+      { return __x > __y; }
+    };
+
+  /// One of the @link comparison_functors comparison functors@endlink.
+  template<typename _Tp>
+    struct less : public binary_function<_Tp, _Tp, bool>
+    {
+      bool
+      operator()(const _Tp& __x, const _Tp& __y) const
+      { return __x < __y; }
+    };
+
+  /// One of the @link comparison_functors comparison functors@endlink.
+  template<typename _Tp>
+    struct greater_equal : public binary_function<_Tp, _Tp, bool>
+    {
+      bool
+      operator()(const _Tp& __x, const _Tp& __y) const
+      { return __x >= __y; }
+    };
+
+  /// One of the @link comparison_functors comparison functors@endlink.
+  template<typename _Tp>
+    struct less_equal : public binary_function<_Tp, _Tp, bool>
+    {
+      bool
+      operator()(const _Tp& __x, const _Tp& __y) const
+      { return __x <= __y; }
+    };
+  /** @}  */
+
+  // 20.3.4 logical operations
+  /** @defgroup logical_functors Boolean Operations Classes
+   * @ingroup functors
+   *
+   *  Here are wrapper functors for Boolean operations: @c &&, @c ||,
+   *  and @c !.
+   *
+   *  @{
+   */
+  /// One of the @link logical_functors Boolean operations functors@endlink.
+  template<typename _Tp>
+    struct logical_and : public binary_function<_Tp, _Tp, bool>
+    {
+      bool
+      operator()(const _Tp& __x, const _Tp& __y) const
+      { return __x && __y; }
+    };
+
+  /// One of the @link logical_functors Boolean operations functors@endlink.
+  template<typename _Tp>
+    struct logical_or : public binary_function<_Tp, _Tp, bool>
+    {
+      bool
+      operator()(const _Tp& __x, const _Tp& __y) const
+      { return __x || __y; }
+    };
+
+  /// One of the @link logical_functors Boolean operations functors@endlink.
+  template<typename _Tp>
+    struct logical_not : public unary_function<_Tp, bool>
+    {
+      bool
+      operator()(const _Tp& __x) const
+      { return !__x; }
+    };
+  /** @}  */
+
+  // _GLIBCXX_RESOLVE_LIB_DEFECTS
+  // DR 660. Missing Bitwise Operations.
+  template<typename _Tp>
+    struct bit_and : public binary_function<_Tp, _Tp, _Tp>
+    {
+      _Tp
+      operator()(const _Tp& __x, const _Tp& __y) const
+      { return __x & __y; }
+    };
+
+  template<typename _Tp>
+    struct bit_or : public binary_function<_Tp, _Tp, _Tp>
+    {
+      _Tp
+      operator()(const _Tp& __x, const _Tp& __y) const
+      { return __x | __y; }
+    };
+
+  template<typename _Tp>
+    struct bit_xor : public binary_function<_Tp, _Tp, _Tp>
+    {
+      _Tp
+      operator()(const _Tp& __x, const _Tp& __y) const
+      { return __x ^ __y; }
+    };
+
+  // 20.3.5 negators
+  /** @defgroup negators Negators
+   * @ingroup functors
+   *
+   *  The functions @c not1 and @c not2 each take a predicate functor
+   *  and return an instance of @c unary_negate or
+   *  @c binary_negate, respectively.  These classes are functors whose
+   *  @c operator() performs the stored predicate function and then returns
+   *  the negation of the result.
+   *
+   *  For example, given a vector of integers and a trivial predicate,
+   *  \code
+   *  struct IntGreaterThanThree
+   *    : public std::unary_function<int, bool>
+   *  {
+   *      bool operator() (int x) { return x > 3; }
+   *  };
+   *
+   *  std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree()));
+   *  \endcode
+   *  The call to @c find_if will locate the first index (i) of @c v for which
+   *  <code>!(v[i] > 3)</code> is true.
+   *
+   *  The not1/unary_negate combination works on predicates taking a single
+   *  argument.  The not2/binary_negate combination works on predicates which
+   *  take two arguments.
+   *
+   *  @{
+   */
+  /// One of the @link negators negation functors@endlink.
+  template<typename _Predicate>
+    class unary_negate
+    : public unary_function<typename _Predicate::argument_type, bool>
+    {
+    protected:
+      _Predicate _M_pred;
+
+    public:
+      explicit
+      unary_negate(const _Predicate& __x) : _M_pred(__x) { }
+
+      bool
+      operator()(const typename _Predicate::argument_type& __x) const
+      { return !_M_pred(__x); }
+    };
+
+  /// One of the @link negators negation functors@endlink.
+  template<typename _Predicate>
+    inline unary_negate<_Predicate>
+    not1(const _Predicate& __pred)
+    { return unary_negate<_Predicate>(__pred); }
+
+  /// One of the @link negators negation functors@endlink.
+  template<typename _Predicate>
+    class binary_negate
+    : public binary_function<typename _Predicate::first_argument_type,
+                            typename _Predicate::second_argument_type, bool>
+    {
+    protected:
+      _Predicate _M_pred;
+
+    public:
+      explicit
+      binary_negate(const _Predicate& __x) : _M_pred(__x) { }
+
+      bool
+      operator()(const typename _Predicate::first_argument_type& __x,
+                const typename _Predicate::second_argument_type& __y) const
+      { return !_M_pred(__x, __y); }
+    };
+
+  /// One of the @link negators negation functors@endlink.
+  template<typename _Predicate>
+    inline binary_negate<_Predicate>
+    not2(const _Predicate& __pred)
+    { return binary_negate<_Predicate>(__pred); }
+  /** @}  */
+
+  // 20.3.7 adaptors pointers functions
+  /** @defgroup pointer_adaptors Adaptors for pointers to functions
+   * @ingroup functors
+   *
+   *  The advantage of function objects over pointers to functions is that
+   *  the objects in the standard library declare nested typedefs describing
+   *  their argument and result types with uniform names (e.g., @c result_type
+   *  from the base classes @c unary_function and @c binary_function).
+   *  Sometimes those typedefs are required, not just optional.
+   *
+   *  Adaptors are provided to turn pointers to unary (single-argument) and
+   *  binary (double-argument) functions into function objects.  The
+   *  long-winded functor @c pointer_to_unary_function is constructed with a
+   *  function pointer @c f, and its @c operator() called with argument @c x
+   *  returns @c f(x).  The functor @c pointer_to_binary_function does the same
+   *  thing, but with a double-argument @c f and @c operator().
+   *
+   *  The function @c ptr_fun takes a pointer-to-function @c f and constructs
+   *  an instance of the appropriate functor.
+   *
+   *  @{
+   */
+  /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
+  template<typename _Arg, typename _Result>
+    class pointer_to_unary_function : public unary_function<_Arg, _Result>
+    {
+    protected:
+      _Result (*_M_ptr)(_Arg);
+
+    public:
+      pointer_to_unary_function() { }
+
+      explicit
+      pointer_to_unary_function(_Result (*__x)(_Arg))
+      : _M_ptr(__x) { }
+
+      _Result
+      operator()(_Arg __x) const
+      { return _M_ptr(__x); }
+    };
+
+  /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
+  template<typename _Arg, typename _Result>
+    inline pointer_to_unary_function<_Arg, _Result>
+    ptr_fun(_Result (*__x)(_Arg))
+    { return pointer_to_unary_function<_Arg, _Result>(__x); }
+
+  /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
+  template<typename _Arg1, typename _Arg2, typename _Result>
+    class pointer_to_binary_function
+    : public binary_function<_Arg1, _Arg2, _Result>
+    {
+    protected:
+      _Result (*_M_ptr)(_Arg1, _Arg2);
+
+    public:
+      pointer_to_binary_function() { }
+
+      explicit
+      pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2))
+      : _M_ptr(__x) { }
+
+      _Result
+      operator()(_Arg1 __x, _Arg2 __y) const
+      { return _M_ptr(__x, __y); }
+    };
+
+  /// One of the @link pointer_adaptors adaptors for function pointers@endlink.
+  template<typename _Arg1, typename _Arg2, typename _Result>
+    inline pointer_to_binary_function<_Arg1, _Arg2, _Result>
+    ptr_fun(_Result (*__x)(_Arg1, _Arg2))
+    { return pointer_to_binary_function<_Arg1, _Arg2, _Result>(__x); }
+  /** @}  */
+
+  template<typename _Tp>
+    struct _Identity
+#ifndef __GXX_EXPERIMENTAL_CXX0X__
+    // unary_function itself is deprecated in C++11 and deriving from
+    // it can even be a nuisance (see PR 52942).
+    : public unary_function<_Tp,_Tp>
+#endif
+    {
+      _Tp&
+      operator()(_Tp& __x) const
+      { return __x; }
+
+      const _Tp&
+      operator()(const _Tp& __x) const
+      { return __x; }
+    };
+
+  template<typename _Pair>
+    struct _Select1st
+#ifndef __GXX_EXPERIMENTAL_CXX0X__
+    : public unary_function<_Pair, typename _Pair::first_type>
+#endif
+    {
+      typename _Pair::first_type&
+      operator()(_Pair& __x) const
+      { return __x.first; }
+
+      const typename _Pair::first_type&
+      operator()(const _Pair& __x) const
+      { return __x.first; }
+
+#ifdef __GXX_EXPERIMENTAL_CXX0X__
+      template<typename _Pair2>
+        typename _Pair2::first_type&
+        operator()(_Pair2& __x) const
+        { return __x.first; }
+
+      template<typename _Pair2>
+        const typename _Pair2::first_type&
+        operator()(const _Pair2& __x) const
+        { return __x.first; }
+#endif
+    };
+
+  template<typename _Pair>
+    struct _Select2nd
+#ifndef __GXX_EXPERIMENTAL_CXX0X__
+    : public unary_function<_Pair, typename _Pair::second_type>
+#endif
+    {
+      typename _Pair::second_type&
+      operator()(_Pair& __x) const
+      { return __x.second; }
+
+      const typename _Pair::second_type&
+      operator()(const _Pair& __x) const
+      { return __x.second; }
+    };
+
+  // 20.3.8 adaptors pointers members
+  /** @defgroup memory_adaptors Adaptors for pointers to members
+   * @ingroup functors
+   *
+   *  There are a total of 8 = 2^3 function objects in this family.
+   *   (1) Member functions taking no arguments vs member functions taking
+   *        one argument.
+   *   (2) Call through pointer vs call through reference.
+   *   (3) Const vs non-const member function.
+   *
+   *  All of this complexity is in the function objects themselves.  You can
+   *   ignore it by using the helper function mem_fun and mem_fun_ref,
+   *   which create whichever type of adaptor is appropriate.
+   *
+   *  @{
+   */
+  /// One of the @link memory_adaptors adaptors for member
+  /// pointers@endlink.
+  template<typename _Ret, typename _Tp>
+    class mem_fun_t : public unary_function<_Tp*, _Ret>
+    {
+    public:
+      explicit
+      mem_fun_t(_Ret (_Tp::*__pf)())
+      : _M_f(__pf) { }
+
+      _Ret
+      operator()(_Tp* __p) const
+      { return (__p->*_M_f)(); }
+
+    private:
+      _Ret (_Tp::*_M_f)();
+    };
+
+  /// One of the @link memory_adaptors adaptors for member
+  /// pointers@endlink.
+  template<typename _Ret, typename _Tp>
+    class const_mem_fun_t : public unary_function<const _Tp*, _Ret>
+    {
+    public:
+      explicit
+      const_mem_fun_t(_Ret (_Tp::*__pf)() const)
+      : _M_f(__pf) { }
+
+      _Ret
+      operator()(const _Tp* __p) const
+      { return (__p->*_M_f)(); }
+
+    private:
+      _Ret (_Tp::*_M_f)() const;
+    };
+
+  /// One of the @link memory_adaptors adaptors for member
+  /// pointers@endlink.
+  template<typename _Ret, typename _Tp>
+    class mem_fun_ref_t : public unary_function<_Tp, _Ret>
+    {
+    public:
+      explicit
+      mem_fun_ref_t(_Ret (_Tp::*__pf)())
+      : _M_f(__pf) { }
+
+      _Ret
+      operator()(_Tp& __r) const
+      { return (__r.*_M_f)(); }
+
+    private:
+      _Ret (_Tp::*_M_f)();
+  };
+
+  /// One of the @link memory_adaptors adaptors for member
+  /// pointers@endlink.
+  template<typename _Ret, typename _Tp>
+    class const_mem_fun_ref_t : public unary_function<_Tp, _Ret>
+    {
+    public:
+      explicit
+      const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const)
+      : _M_f(__pf) { }
+
+      _Ret
+      operator()(const _Tp& __r) const
+      { return (__r.*_M_f)(); }
+
+    private:
+      _Ret (_Tp::*_M_f)() const;
+    };
+
+  /// One of the @link memory_adaptors adaptors for member
+  /// pointers@endlink.
+  template<typename _Ret, typename _Tp, typename _Arg>
+    class mem_fun1_t : public binary_function<_Tp*, _Arg, _Ret>
+    {
+    public:
+      explicit
+      mem_fun1_t(_Ret (_Tp::*__pf)(_Arg))
+      : _M_f(__pf) { }
+
+      _Ret
+      operator()(_Tp* __p, _Arg __x) const
+      { return (__p->*_M_f)(__x); }
+
+    private:
+      _Ret (_Tp::*_M_f)(_Arg);
+    };
+
+  /// One of the @link memory_adaptors adaptors for member
+  /// pointers@endlink.
+  template<typename _Ret, typename _Tp, typename _Arg>
+    class const_mem_fun1_t : public binary_function<const _Tp*, _Arg, _Ret>
+    {
+    public:
+      explicit
+      const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const)
+      : _M_f(__pf) { }
+
+      _Ret
+      operator()(const _Tp* __p, _Arg __x) const
+      { return (__p->*_M_f)(__x); }
+
+    private:
+      _Ret (_Tp::*_M_f)(_Arg) const;
+    };
+
+  /// One of the @link memory_adaptors adaptors for member
+  /// pointers@endlink.
+  template<typename _Ret, typename _Tp, typename _Arg>
+    class mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret>
+    {
+    public:
+      explicit
+      mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg))
+      : _M_f(__pf) { }
+
+      _Ret
+      operator()(_Tp& __r, _Arg __x) const
+      { return (__r.*_M_f)(__x); }
+
+    private:
+      _Ret (_Tp::*_M_f)(_Arg);
+    };
+
+  /// One of the @link memory_adaptors adaptors for member
+  /// pointers@endlink.
+  template<typename _Ret, typename _Tp, typename _Arg>
+    class const_mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret>
+    {
+    public:
+      explicit
+      const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const)
+      : _M_f(__pf) { }
+
+      _Ret
+      operator()(const _Tp& __r, _Arg __x) const
+      { return (__r.*_M_f)(__x); }
+
+    private:
+      _Ret (_Tp::*_M_f)(_Arg) const;
+    };
+
+  // Mem_fun adaptor helper functions.  There are only two:
+  // mem_fun and mem_fun_ref.
+  template<typename _Ret, typename _Tp>
+    inline mem_fun_t<_Ret, _Tp>
+    mem_fun(_Ret (_Tp::*__f)())
+    { return mem_fun_t<_Ret, _Tp>(__f); }
+
+  template<typename _Ret, typename _Tp>
+    inline const_mem_fun_t<_Ret, _Tp>
+    mem_fun(_Ret (_Tp::*__f)() const)
+    { return const_mem_fun_t<_Ret, _Tp>(__f); }
+
+  template<typename _Ret, typename _Tp>
+    inline mem_fun_ref_t<_Ret, _Tp>
+    mem_fun_ref(_Ret (_Tp::*__f)())
+    { return mem_fun_ref_t<_Ret, _Tp>(__f); }
+
+  template<typename _Ret, typename _Tp>
+    inline const_mem_fun_ref_t<_Ret, _Tp>
+    mem_fun_ref(_Ret (_Tp::*__f)() const)
+    { return const_mem_fun_ref_t<_Ret, _Tp>(__f); }
+
+  template<typename _Ret, typename _Tp, typename _Arg>
+    inline mem_fun1_t<_Ret, _Tp, _Arg>
+    mem_fun(_Ret (_Tp::*__f)(_Arg))
+    { return mem_fun1_t<_Ret, _Tp, _Arg>(__f); }
+
+  template<typename _Ret, typename _Tp, typename _Arg>
+    inline const_mem_fun1_t<_Ret, _Tp, _Arg>
+    mem_fun(_Ret (_Tp::*__f)(_Arg) const)
+    { return const_mem_fun1_t<_Ret, _Tp, _Arg>(__f); }
+
+  template<typename _Ret, typename _Tp, typename _Arg>
+    inline mem_fun1_ref_t<_Ret, _Tp, _Arg>
+    mem_fun_ref(_Ret (_Tp::*__f)(_Arg))
+    { return mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }
+
+  template<typename _Ret, typename _Tp, typename _Arg>
+    inline const_mem_fun1_ref_t<_Ret, _Tp, _Arg>
+    mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const)
+    { return const_mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); }
+
+  /** @}  */
+
+_GLIBCXX_END_NAMESPACE_VERSION
+} // namespace
+
+#if !defined(__GXX_EXPERIMENTAL_CXX0X__) || _GLIBCXX_USE_DEPRECATED
+# include <backward/binders.h>
+#endif
+
+#endif /* _STL_FUNCTION_H */