
Visual COBOL - Modern COBOL for the next generation

1

Visual COBOL -

Modern COBOL for the

next generation

Micro Focus Education Services

Copyright © Micro Focus 2015-2016. All rights reserved.

Visual COBOL - Table of Contents

2

Table of Contents
01 COBOL Course Introduction ... 12

Introduction .. 12

Module Objectives .. 12

Student Assumptions .. 12

Course structure ... 12

What is COBOL? .. 13

COBOL Features .. 13

Brief history of COBOL .. 14

Why use COBOL? .. 14

About the Author .. 15

Class setup .. 15

Samples ... 15

Module Summary ... 16

Quick Quiz ... 16

02 COBOL Introduction ... 17

Introduction .. 17

Module Objectives .. 17

The structure of a COBOL program ... 17

Divisions .. 17

Simple Example ... 17

Exercise ... 18

Module Summary ... 19

Quick Quiz ... 19

03 Basic COBOL Structure ... 20

Introduction .. 20

Module Objectives .. 20

Programming Layout ... 20

Identification Division ... 23

Environment Division .. 23

Data Division ... 24

File Section .. 25

Working-Storage Section .. 25

Copyright © Micro Focus 2015-2016. All rights reserved.

Visual COBOL - Table of Contents

3

Linkage Section ... 25

Procedure Division .. 26

Use of periods ... 26

Data File Assignment .. 27

Module Summary ... 27

Exercise ... 27

Quick Quiz ... 28

4 Data Representation .. 30

Introduction .. 30

Module Objectives .. 30

Defining Data .. 30

Data Names .. 31

Data Name restrictions ... 31

Reserved Words .. 32

Data Hierarchy .. 32

The PICTURE Clause .. 33

Handling numeric data .. 35

Exercise 1 .. 36

The FILLER clause .. 36

The USAGE clause ... 37

Usage DISPLAY .. 37

Usage BINARY ... 38

Usage Packed Decimal .. 38

The VALUE Clause ... 39

Figurative Constants ... 40

The REDEFINES clause ... 41

The COPY statement ... 42

The COPY REPLACING statement .. 42

Exercise 2 .. 43

Data item naming ... 43

Module Summary ... 44

Further Optional Exercises .. 44

Quick Quiz ... 44

05 Basic Verbs ... 46

Copyright © Micro Focus 2015-2016. All rights reserved.

Visual COBOL - Table of Contents

4

Introduction .. 46

Module Objectives .. 46

Simple Example ... 46

Statement Termination ... 47

Commonly used verbs... 50

DISPLAY verb ... 50

ACCEPT verb .. 50

MOVE verb .. 51

PERFORM Verb ... 53

Using Comments ... 57

STOP Verb ... 57

COBOL program execution .. 58

Mixing GO TO and PERFORM .. 61

Module Summary ... 62

Exercises ... 62

Quick Quiz ... 62

06 Best Practice .. 63

Introduction .. 63

Module Objectives .. 63

Designing a COBOL Program ... 63

Structure Diagrams ... 65

Example .. 66

Truth tables ... 68

Input and Output files ... 68

Module Summary ... 71

Exercise 1 .. 71

Exercise 2 .. 71

Exercise 3 .. 72

Quick Quiz ... 73

07 Handling Sequential Data Files ... 75

Introduction .. 75

Module Objectives .. 75

Files and Records .. 75

Program statements required ... 76

Copyright © Micro Focus 2015-2016. All rights reserved.

Visual COBOL - Table of Contents

5

Connecting Files .. 76

Identifying Files ... 76

Defining file layouts .. 78

The File Description FD entry .. 78

File Record structure ... 78

COBOL verbs for sequential file access ... 79

Exercise 1 .. 82

Extending the verbs .. 82

The full READ verb .. 82

The full WRITE verb ... 83

Points to remember. ... 83

File records of different lengths .. 84

Module Summary ... 84

Exercise 2 .. 84

Exercise 3 .. 85

Quick Quiz ... 85

08 Decision Logic .. 87

Introduction .. 87

Module Objectives .. 87

The IF statement ... 87

Condition phrases ... 88

The EVALUATE statement ... 92

Simple EVALUATE .. 92

Condition EVALUATE ... 93

Compound EVALUATE ... 93

The CONTINUE clause ... 93

Infinite loops ... 94

Module Summary ... 95

Exercise 1 .. 95

Exercise 2 .. 96

Exercise 3 – Fixing compilation errors ... 96

Further Simple Exercises ... 97

Exercise 4 – Fixing loop and file end problems ... 97

Quick Quiz ... 97

Copyright © Micro Focus 2015-2016. All rights reserved.

Visual COBOL - Table of Contents

6

09 Data Manipulation ... 99

Introduction .. 99

Module Objectives .. 99

Manipulating Data .. 99

The INITIALIZE verb ... 99

Arithmetic verbs ... 100

ON SIZE ERROR clause ... 104

Verbs used for string handling .. 105

INSPECT Statement ... 105

STRING Statement .. 107

UNSTRING Statement ... 108

Reference Modification .. 109

Module Summary ... 109

Exercise 1 .. 109

Exercise 2 .. 110

Exercise 3 .. 110

Optional Exercises ... 112

Quick Quiz ... 113

10 Repeating Data .. 114

Introduction .. 114

Module Objectives .. 114

Representing Repeating Data ... 114

Keeping a subscript in range ... 115

Look up tables ... 116

Exercise 1 .. 116

Indexes .. 116

Subscripts v Indexes .. 117

Using the SEARCH verb ... 117

Exercise 2 .. 117

Modifying index values ... 117

Multi-dimensional tables .. 118

Variable length tables ... 118

Module Summary ... 119

Exercise 3 .. 119

Copyright © Micro Focus 2015-2016. All rights reserved.

Visual COBOL - Table of Contents

7

Quick Quiz ... 119

11 Printing and Reports .. 121

Introduction .. 121

Module Objectives .. 121

Edited Fields .. 121

Leading Zeros .. 121

Blank when zero .. 122

Other leading characters... 123

Adding Commas and decimal point .. 123

Currency symbols .. 123

Plus and Minus Signs ... 124

Credit and Debit Signs ... 124

Insertion characters .. 125

Coding a Print Program ... 125

Setting up a print line .. 126

Writing a print line .. 127

Designing a Print Program .. 127

Using Report Writer .. 129

Module Summary ... 130

Exercise ... 130

Quick Quiz ... 131

12 Using Indexed Files .. 133

Introduction .. 133

Module Objectives .. 133

Indexed File Structure ... 133

Accessing an indexed file .. 134

Random Access ... 135

Exercise 1 .. 137

Accessing an indexed file sequentially .. 140

Accessing an indexed file dynamically .. 141

Using Alternate Keys ... 141

Alternate Key READ ... 142

File Errors using file status clause ... 142

Use of Declaratives ... 143

Copyright © Micro Focus 2015-2016. All rights reserved.

Visual COBOL - Table of Contents

8

Module Summary ... 144

Further Exercises... 144

Exercise 2 .. 144

Exercise 3 .. 144

Exercise 4 .. 144

Quick Quiz ... 146

13 Modular Programming ... 148

Introduction .. 148

Module Objectives .. 149

The CALL statement .. 149

Call using a data name .. 149

Call Nesting ... 150

Passing parameters ... 150

Exercise 1 .. 150

Using a return code ... 151

Exercise 2 .. 152

Exercise 3 .. 152

Module Summary ... 152

Quick Quiz ... 152

14 Screen Handling ... 154

Introduction .. 154

Module Objectives .. 154

Basic Display and Accept ... 154

Enhancements to Display and Accept ... 154

Exercise – Screen section syntax ... 155

Module Summary ... 155

Quick Quiz ... 156

15 Database use .. 157

Introduction .. 157

Module Objectives .. 157

Database connection .. 157

Sample database ... 157

Accessing the database from COBOL .. 162

Module Summary ... 167

Copyright © Micro Focus 2015-2016. All rights reserved.

Visual COBOL - Table of Contents

9

Exercise ... 167

Quick Quiz ... 167

16 Object Oriented COBOL ... 168

Introduction .. 168

Module Objectives .. 168

Program v Class ... 168

Quick Start Scenario .. 168

Class Structure .. 169

Evolving demonstrations .. 169

Exercise 1 .. 170

Exercise 2 .. 171

Exercise 3 .. 172

Exercise 4 .. 175

Exercise 5 .. 176

Module Summary ... 176

Quick Quiz ... 176

17 Further JVM Features... 178

Introduction .. 178

Module Objectives .. 178

Project detail ... 178

18 Course Conclusions .. 179

Course Follow-on .. 179

Course Examination .. 179

19 Appendix I - Managed COBOL Review.. 180

Introduction .. 180

Managed COBOL refresher ... 180

Classes & Methods .. 180

Objects .. 183

Creating an instance of a class .. 184

Constructors ... 185

Recap .. 186

Properties ... 186

Method Visibility ... 187

Local Data ... 188

Copyright © Micro Focus 2015-2016. All rights reserved.

Visual COBOL - Table of Contents

10

Recap .. 188

Data Types .. 188

Inheritance .. 189

Casting .. 192

Interfaces .. 192

Class names .. 195

Intrinsic types.. 195

The .NET and JVM frameworks ... 196

Reflection .. 198

What Next? ... 198

Further Reading .. 198

20 Appendix II – Further Features... 200

Introduction .. 200

Module Objectives .. 202

Other Data File types .. 202

Report writing ... 203

Sorting data files ... 203

Local-Storage Section .. 203

Intrinsic functions ... 203

Library routines ... 203

Module Summary ... 204

Copyright © Micro Focus 2015-2016. All rights reserved.

Visual COBOL - Table of Contents

11

Copyright © Micro Focus 2015-2016. All rights reserved.

01 COBOL Course Introduction

12

01 COBOL Course Introduction

Forward
First and Foremost, Welcome. We are glad you have selected Visual COBOL: Modern COBOL for the

Next Generation.

We believe in the unique power and flexibility of the COBOL language.

Today, 85% of the world’s business applications and 70% of business data processing is dependent

on COBOL. COBOL is everywhere and touches our daily lives in many ways. Did you know that the

average person interacts with COBOL at least 10 times per day and is typically unaware. The perfect

example of this interaction is at the ATM. Each of us, who withdraw money from our banking

provider, interacts with COBOL. Yes, there is a fancy, interactive interface at the ATM, but behind

the scenes, COBOL is the driving engine, delivering account balance information, depositing funds, or

withdrawing money from your account.

But just as ATM interfaces have changed, so has the enterprise application development market.

COBOL, once considered, the exclusive ‘enterprise’ language for business is now challenged by more

modern languages such as C#, or Java. Today’s business applications are moving forward, seeking to

harness new technologies. So, what does this movement mean for COBOL? Can the COBOL

language evolve and embrace these next generation technologies as well?

It’s time for a step change forward--It’s time for Visual COBOL.

This book is designed to teach its reader the Visual COBOL language. With Visual COBOL, you will

unlock your potential to assist today’s business organizations in maintaining, supporting, and

enhancing their critical business applications. You’ll also gain a valuable market skill expanding your

repertoire as a developer.

I’d like to welcome your on this journey and encourage you to seize this opportunity. Visual COBOL

connects the business application world to the exciting, modern, next generation of technologies

such as Visual Studio, .NET, mobile computing, and more. You will be amazed by what Visual COBOL

can do!

Thanks again for choosing Visual COBOL: Modern COBOL for the Next Generation.

Ed Airey

Product Marketing Director of COBOL Solutions

Micro Focus

Introduction
This course takes you through the structure and features of the COBOL programming language.

It starts with “traditional” COBOL and then moves through the implementation of Object Oriented

COBOL in the 1990s and then on to more recent developments; providing fully featured Visual

COBOL using all the powers of the Java framework.

Copyright © Micro Focus 2015-2016. All rights reserved.

01 COBOL Course Introduction

13

Examples will be provided, showing how Java code can be used to fully integrate with legacy COBOL

code, as well as more modern COBOL applications.

The course will not contain every single detail of COBOL coding but will cover all the major language

features that you will most commonly be using. At the end of the course, there is an appendix, which

will list further features of COBOL and point to other reading material to extend your knowledge.

Module Objectives
At the end of this module you will be familiar with:

 The reason for COBOL.

 A brief history of COBOL.

 The main features of COBOL.

You will also have set up the sample programs and projects that you will use during this course. In

addition you will have configured a number of settings in Visual COBOL which you will need.

Student Assumptions
It is assumed that you, the student:

 Have some programming skills.

 Have little or no knowledge of COBOL.

 Are comfortable with the use of an Integrated Development Environment (IDE) such as

Eclipse.

Course structure
During each module there will be a series of student exercises. The end of each module there will be

a short quiz with mainly multiple-choice questions (Or True/False questions). The answers to these

quiz questions are provided to your instructor, in a separate document, which can be given to you,

as required.

At the end of the course, there will be a final course examination, which is also mainly a set of multi-

choice questions. A set of answers are also provided for the instructor.

At the end of the regular course materials you will find 2 Appendices:

 Appendix 1 – Contains a refresher of Object Oriented COBOL programming with some

additional description and features that have not been fully covered in the course.

 Appendix 2 – Contains descriptions of some less used COBOL features, which may be of

interest to you.

What is COBOL?

COBOL (COmmon Business Oriented Language) is one of many high-level computer programming

languages.

COBOL was originally designed to solve common business problems, which often require collection,

processing and reporting on large quantities of data. For example, COBOL programs generate payroll

Copyright © Micro Focus 2015-2016. All rights reserved.

01 COBOL Course Introduction

14

information, store and report on personnel information, provide stock control and produce profit

and loss statements etc.

Some languages are geared toward solving scientific problems that require complex algorithms.

Some languages are targeted at user interface features such as Windows Forms or Web Forms.

COBOL, in its earliest form, was best suited for financial and business data processing and reporting.

In later evolutions of COBOL the use of Windows Forms, Web Forms and Web Services has become

very simple to implement, entirely in COBOL.

COBOL still remains very much the language of choice for complex business and financial

applications as well as providing very strong simple interfaces to data storage; whether it is regular

data storage or integration to databases such as relational, hierarchical or pointer driven databases

etc.

COBOL is an easy-to-understand language. It uses English-like structures, such as paragraphs,

statements, and verbs. Paragraphs contain statements; statements can include verbs. It also is a

highly structured language, where different types of statements must be included in specific parts of

the program. This structure helps in the analysis of COBOL programs.

For the above reasons COBOL is a very easy language to maintain. Most commercial applications

pass though many update processes in their life span. Ease of maintenance is generally a very high

priority when choosing a suitable programming language.

There are hundreds of thousands of COBOL programs in use today; which began life 30 or 40 years

ago. These legacy programs represent over 50% of the world’s program source, containing billions of

line of code. This legacy code is an extremely valuable asset to the Organizations to which they

belong.

What we would like to do is to retain as much of this legacy code as possible, while moving forward

to more modern user and data interfaces. COBOL provides us with many mechanisms to do just this.

COBOL Features

COBOL includes the following features:

• Representation of commercial concepts of files and records, such as employee name and

salary information in personnel records.

• Excellent data definition — data fields customized for each program.

• A wide range of data (numeric and string) manipulation facilities.

• Comprehensive file-handling capabilities, such as methods to open and close files, store file

data, and update file records.

• Database handling capability.

• High-level data processing commands (for example, sort, merge, and table manipulation

commands).

Copyright © Micro Focus 2015-2016. All rights reserved.

01 COBOL Course Introduction

15

• Conformity to an agreed standard, so that different companies can offer COBOL

programming tools with the same features.

• Support for common mathematical functions, such as trigonometric and logarithmic

functions, although COBOL was not initially designed to solve highly complex scientific

problems.

• Tight integration with Microsoft .NET programming languages.

• The ability to code for Windows Forms, Web Forms and Web Services.

Brief history of COBOL

COBOL was developed by Rear Admiral Grace Hopper in 1959 as a language for commercial

implementation. It has a long and steady history, with continued developments, that make it a viable

choice for many applications.

COBOL has continually evolved, embracing new technologies with its basic business logic remaining

intact.

All through this evolution, COBOL still meets today’s computing needs and remains true to strict

standards as developed by the American National Standards Institute (ANSI). (Although recent

developments in the .NET world have accelerated faster, meaning that the standards, in these areas,

have moved forward faster also).

In the past, Mainframe computers processed large quantities of data. Since then, many companies

now consider client/server technology for their processing needs. COBOL fully supports this

technology, with its basic business logic remaining sound.

COBOL can be viewed as the internal combustion engine of the computing community; it is familiar,

perceived as unglamorous, and largely taken for granted. Just like the internal combustion engine, it

is and will continue to be, a vital part of many of our society’s applications.

However today, with the Object Oriented features and the integration with .NET (and JVM), much of

the glamour has returned to COBOL.

Why use COBOL?

Compared with other programming languages, COBOL results in programs that are regarded by

some as “verbose”. This dramatically differs with languages such as C, where programs can be more

obscure. COBOL, on the other hand, encourages coding that is easy to read and therefore, simple to

maintain.

Because modern COBOL compilers produce tight, efficient code, wordiness in a program does not

reduce performance. COBOL is one of the most readable and self-documenting programming

languages in use today. This makes maintenance of COBOL code much simpler than most other

languages.

Recent developments of Object Oriented COBOL and integration with the .NET framework have

made COBOL the language of choice for many Organizations. This is particularly true for

Copyright © Micro Focus 2015-2016. All rights reserved.

01 COBOL Course Introduction

16

Organizations who have much legacy code that they require to interface to, while moving into more

modern user and data interfaces.

About the Author

The author of this training course lectured in commercial application design and programming at the

University of Manchester, in England and has presented at many conferences world-wide, both for

the University and later for Micro Focus.

He joined Micro Focus as a development team leader and has since worked in various capacities

within Micro Focus as a developer, customer consultant, software development team leader, project

manager, training development manager and training courseware developer.

He has been a COBOL programmer and advisor for the last 30 years.

Class setup
You can use this course very simply, as though you were reading a book. However this is not the best

way to learn a programming language.

The course uses many illustrated examples and exercises and these are best demonstrated with the

use of a program development environment.

So in order to effectively use the materials, provided throughout this course, you are advised to

install:

 Micro Focus Visual COBOL

 The set of sample programs supplied with the course

 You will also find it valuable to install the Micro Focus data tools add-pack to allow you to

view and edit your data files

Samples

A variety of sample projects, programs and data files are provided.

These are installed by executing the self-extracting compressed file

COBOLClass_Eclipse.exe. These files should be extracted to the root of

your C:\ drive to give the following folders:

These folders and files will be used extensively during the running of

this class.

Module Summary
At the end of this module you should now be familiar with:

 The reason for COBOL

 A brief history of COBOL

 The main features of COBOL

You have set up the sample programs and projects that you will be using during this course.

In addition you have configured a number of settings in Visual COBOL.

Copyright © Micro Focus 2015-2016. All rights reserved.

01 COBOL Course Introduction

17

Quick Quiz
1. When was COBOL first used?

a. 1949

b. 1959

c. 1969

d. 1979

2. Traditional legacy COBOL is good at:

a. JVM integration

b. Object Orientation

c. Business Logic

d. Complex arithmetic

3. Modern COBOL is good at:

a. JVM integration

b. Object Orientation

c. Business Logic

d. All of these

e. None of these

Copyright © Micro Focus 2015-2016. All rights reserved.

02 COBOL Introduction

17

02 COBOL Introduction

Introduction
In this module we will take you through the basic structure of a traditional COBOL program.

For now we will be looking at COBOL programs which many would regard as traditional “legacy”

programs.

Later modules will deal with the later extensions to COBOL which include Object Oriented COBOL

and JVM COBOL.

Module Objectives
At the end of this module you will be familiar with:

 The basic structure of a COBOL program.

 A simple example of a traditional program.

The structure of a COBOL program
A COBOL program is divided into Divisions.

Each Division can be divided into Sections.

Each Section can be divided into Paragraphs.

Each Paragraph can contain a number of Statements.

Divisions

A COBOL program includes four Divisions. Although some compilers will permit the omission of

some of the divisions, they must appear in the following sequence.

IDENTIFICATION DIVISION – the first division. Statements here define the name of the program and

comments that describe the program’s function.

ENVIRONMENT DIVISION – the second division. The particular system environment under which

the program will run is defined here.

DATA DIVISION – the third division. This is where all data is defined. All programs manipulate data

in some way.

PROCEDURE DIVISION – the final division. This division contains all the statements that determine

what the program does. Any data items referred to must have been already defined in the Data

Division.

Simple Example

The following COBOL program illustrates the breakdown of the structure of a simple COBOL

program:

Copyright © Micro Focus 2015-2016. All rights reserved.

02 COBOL Introduction

18

There you can see the 4 Divisions of a COBOL program together with Sections, Paragraphs and

Statements as appropriate.

Look for the four Divisions; don’t worry about the specifics of the code for now.

Look for the Sections within each Division.

Look for Paragraphs within each Section. (This is not so obvious – there are 5 in total – one of them

is contained in Division, without a Section).

Exercise
1. Start Visual COBOL for Eclipse and set the workspace to:

C:\COBOLClass_Eclipse\Projects\02_01_Division_Example

2. Double click the DIVEX.CBL in the COBOL tab and see the COBOL program shown above.

3. What is the name (ID) of the program?

4. How many sections are there in the sample program? (This is not so obvious – there are 5 in

total).

Copyright © Micro Focus 2015-2016. All rights reserved.

02 COBOL Introduction

19

5. Run this program by pressing right-clicking on the program name and selecting Run

As/COBOL Application (This program does not do anything useful except say ‘Hello World’

and then asks you to press the Carriage Return key).

Module Summary
At the end of this module you will now be familiar with:

 The basic structure of a COBOL program

 A simple example of a traditional program

Quick Quiz
1. The divisions of a COBOL program in order are:

a. Identification, Environment, Data and Procedure

b. Identification, Configuration, Data and Procedure

c. Identity, Environment, Data and Logic

d. Environment, Data and Procedure

2. The name of a program is contained in:

a. Data Division

b. Procedure Division

c. Identification Division

d. Linkage Division

3. The original computer that this program was used on was:

a. A Windows PC

b. An IBM 360 mainframe

c. A UNIX machine

d. An IBM 370 mainframe

4. Which of the following is true:

a. A section can contain paragraphs

b. A paragraph can contain sections

c. A section must contain paragraphs

d. A paragraph must contain sections

Copyright © Micro Focus 2015-2016. All rights reserved.

03 Basic COBOL Structure

20

03 Basic COBOL Structure

Introduction
In this module we will start to look at the Basic structure of a COBOL program and what each portion

of the code will contain.

Module Objectives
At the end of this module you will be able to:

 View a basic COBOL program that includes the four divisions and their sections.

 Explain layout-positioning rules imposed by COBOL.

 Execute a simple program.

 See how physical files names can be assigned.

Programming Layout
A typical piece of legacy COBOL code is laid out as shown below:

Where the + indicates 5, 15, 25 etc

Note: We will see in later modules, how this strict layout does not apply so strongly with recent

COBOL extensions.

Divisions, Sections, Paragraphs and Statements

From the previous module, recall that a COBOL program includes four divisions and those divisions

can contain sections.

This module explores the divisions in more detail and analyzes statements written in each section.

Because divisions and statements must be placed in a specific location, we must look at COBOL

programming layout.

Copyright © Micro Focus 2015-2016. All rights reserved.

03 Basic COBOL Structure

21

Program Column Layout Rules

COBOL programs expect statements to be confined to particular columns on an invisible page of 72

column lines. The figure below shows only 52 of those 72 columns and shows two lines of code.

....+....1....+....2....+....3....+....4....+....5..

 PROCEDURE DIVISION.

 000-MAIN SECTION.

Notice that the “P” in Procedure Division appears starting at the 8th column. Each 72-position line

represents one line in a COBOL program. Some columns are reserved for specific items in categories

called areas, as listed in the graphic.

These layout rules are referred to as the COBOL reference format.

Sequence Number Area

Columns 1–6 are not typically used today. They used to be reserved for line numbering, referred to

as sequence numbering. Line numbers can help identify each line in a program. If you use sequence

numbers, they must be six digits (and since 1985 they can be alphanumeric). In the past only the

compiler used these columns. So anything here is ignored. This means that if a statement begins,

say in column 1, the first six characters of the statement will be ignored.

Indicator Area

Column 7 is a special column, where only certain characters can be inserted. By far the most

common of these is an asterisk (*). Placing an asterisk here tells the compiler to see the whole line

as a comment. Because COBOL programs may have a very long life, insert comments into your code

whenever possible (anywhere in the program after the IDENTIFICATION DIVISION). Comments in the

code help ensure that at least some documentation will be available for years to come.

Copyright © Micro Focus 2015-2016. All rights reserved.

03 Basic COBOL Structure

22

The comment below starts with an asterisk on position 7.

....+....1....+....2....+....3....+....4....+....5..

 * *** THIS IS A COMMENT ***

Area A - Columns 8-11

Columns 8-11 are known as Area A.

All Division names, Section names, and Paragraph headings must start here. Also, all 01 data items,

which are discussed later, must start here. Statements under the headings appear indented, making

programs easier to read.

NOTE: Area A is sometimes referred to as Margin A.

COBOL statements in Area A can begin in position 8, 9, 10 or 11. Again to make programs easier to

read, however, programmers typically begin statements in Area A at column 8.

Additionally, all Division and Section headings must appear on one line without other entries and

must end with a period.

Paragraph headings must begin in Area A, but can appear on a line with or without other entries.

Although some paragraph headings do not require periods, adding periods after paragraph headings

will never create errors. So, adding the period might be easier to remember.

NOTE: All the divisions can contain sections and paragraphs. In the case of the first 3 divisions the

section names and paragraph names are fixed names, defined as part of the COBOL language. In the

4th division, procedure division, all the section and paragraph names are user defined by you, the

programmer.

Area B Columns 12-72

Columns 12-72 are known as Area B.

The main body of the program appears here. Also, all entries that began in Area A, or comments,

can continue here.

Area B, statements can begin anywhere starting position 12 through 72, but for ease of reading,

programmers typically start Area B statements at position 12 and indent related statements.

NOTE: Area B is sometimes referred to as Margin B.

Statements in Area B end with a period if the statement ends a paragraph or a section.

Identifying Areas

The following code places all the divisions in their correct column layout. The bolded statements

begin in Area A at position 8. All other statements appear in Area B starting at position 12.

....+....1....+....2....+....3....+....4....+....5..

 IDENTIFICATION DIVISION.

 PROGRAM-ID. EXAMPLE.

 ENVIRONMENT DIVISION.

Copyright © Micro Focus 2015-2016. All rights reserved.

03 Basic COBOL Structure

23

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-370.

 OBJECT-COMPUTER. IBM-370.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT INFILE ASSIGN TO 'EMPL.DAT'.

 SELECT OUTFILE ASSIGN TO 'EMPLOUT.DAT'.

This all seems a little complicated!

Hopefully as you go through examples, it will prove to be less so.

The good news is we are still dealing with traditional legacy COBOL code. As we will see later in the

course, when we talk of more modern implementations of COBOL, most of these positional rules are

relaxed or removed completely.

Of course the colorization indicates different COBOL word types. The actual colors will vary

depending on how you have configured the editor.

For now, for legacy COBOL code, we will need to understand these layout rules.

We will now look at each Division individually.

Identification Division
The Identification Division is the first division in the program.

It contains the name of the program in the “Program-ID” paragraph. (As we will see later in the

course, the program-id can be replaced by class-id for Object Oriented COBOL).

There are other possible entries in this division, but all these additional entries are treated as

comments. e.g.

All these entries start in column 8 (Area A).

Note: Very early COBOL had to be written in all upper case and many later programs are still written

that way. For many years now, upper and lower case are treated as identical. So most of our

examples will contain a mixture of case.

Environment Division
This second division is used to identify any parts of the program that apply to specific computer

hardware or devices. This section also specifies any data files used in the program.

This division can contain two sections.

Copyright © Micro Focus 2015-2016. All rights reserved.

03 Basic COBOL Structure

24

CONFIGURATION SECTION contains particular entries that define the actual environment. This

section is often omitted, if no such entries are necessary.

INPUT-OUTPUT SECTION is present whenever the program reads from or writes to data files. This

section is covered in more detail in a later module, but is used to link the internal file names to

external file locations.

e.g.

Where InFile and Outfile are the internal program names and datain and dataout are the real

physical file names and would have been defined as something like:

C:\COBOLClass_Eclipse\DataFiles\Mydatain.dat and

C:\COBOLClass_Eclipse\DataFiles\Mydataout.dat

Data Division
The Data Division describes the data items needed by the program.

Data can originate from input sources such as files on disk, or tables in databases, or data from

internal working areas.

This division often contains the following Sections:

The FILE SECTION, which is used when accessing data files.

The WORKING-STORAGE SECTION, which holds all the data items that the program needs, e.g.

counters and intermediate variables.

The LINKAGE SECTION, which is used when a program is called by another program and has data

transferred to it.

e.g.

Copyright © Micro Focus 2015-2016. All rights reserved.

03 Basic COBOL Structure

25

File Section

This is used to define the data file contents, used during the execution of the program. E.g.

In this example:

 The infile contains records of length 80 characters.

 The outfile contains records of length 100 characters

 The fd is File Description or File Definition and the names in here must match the names in

the SELECT statement of the input-output section shown earlier.

Working-Storage Section

This section contains the data definitions of the variables that the program needs during it

execution. E.g.

In this example:

 The Work-field is an alphanumeric variable of 20 bytes

 The Counter-field is an integer numeric field of 2 digits

Copyright © Micro Focus 2015-2016. All rights reserved.

03 Basic COBOL Structure

26

Linkage Section

The Linkage-Section is contained in the program that is called, not in the calling program.

Procedure Division

The Procedure Division contains the program’s processing statements. E.g.

As stated earlier, all the section and paragraph names are user defined.

In the above simple example:

 The infile is opened ready to be read.

 The outfile is opened ready to be written to.

 The infile is then read (through the perform statement)

 The infile-record is moved to the outfile-record

Copyright © Micro Focus 2015-2016. All rights reserved.

03 Basic COBOL Structure

27

 The outfile-record is written

 The contents of the outfile-record is displayed on the screen

 The files are then closed and the program stops.

Use of periods
The use of periods is important. Each division and section definition must end with a period

(referred to as a “full stop”). Period is also used to terminate each statement within the first three

divisions (IDENTIFICATION, ENVIRONMENT, and DATA).

If you omit a necessary period, the compiler may notice an error only at the beginning of the next

line, causing a misleading error message to appear. If you ever see an error message that makes

little sense, check missing periods first.

The rules for using periods in the PROCEDURE DIVISION are slightly different, and are discussed in a

later module.

Data File Assignment
There are a number of ways to assign files within a program. Full details will be described later in the

course. However in this example the mapping of internal file name to external file name has been

done in a configuration file. See exercise below.

Module Summary
At the end of this module you are now able to:

 View a basic COBOL program that includes the four divisions and their sections.

 Execute a simple program.

 Explain layout-positioning rules imposed by COBOL.

 See how physical files names can be assigned.

Exercise
1. Inside Visual COBOL for Eclipse, switch the workspace to

C:\COBOLClass_Eclipse\Projects\03_01_Simple_structure. (This will show the program you

have seen above).

2. First of all examine this program to see the contents of the various divisions, sections and

paragraphs.

3. Other than the program-id, change the entries in the Identification Division to be more

sensible.

4. Run the program by right-clicking on the program name in the COBOL tab as before and you

will see that it displays the details of the first record on the output file.

5. See how the COBOL program has been compiled and configured to look for its files

externally. Do this by right-clicking on the project name in the solution explorer and

Copyright © Micro Focus 2015-2016. All rights reserved.

03 Basic COBOL Structure

28

selecting properties.

6. Now selecting the tab shown. In here you can see that the additional directive

assign(external) has been set.

7. You will see a new section here; Linkage Section. This will be discussed later in the course

Quick Quiz
1. What does working-storage section contain?

a. Details of the file definitions

b. Details of data used in the program

c. Details of data passed to the program from another program

d. Logical definitions of data file locations

2. What must be defined after the Installation paragraph?

a. The name of the program

b. The fixed value ‘MARS’

Copyright © Micro Focus 2015-2016. All rights reserved.

03 Basic COBOL Structure

29

c. Anything you like.

d. Nothing must be defined here.

3. In File-Control what are the 2 names

a. The names of the 2 data files

b. The relationship between internal file name and external file name

c. The data items used by the file

d. The procedure names to use in paragraphs

4. What is Linkage Section used for?

a. To contain the file assignments

b. To contain file data definitions

c. To allow data to be passed between programs

d. To contain working data definitions

Copyright © Micro Focus 2015-2016. All rights reserved.

04 Data Representation

30

4 Data Representation

Introduction
This module will show the way that data is represented inside a COBOL program. You will see also

how data can be grouped into records. In addition, you will also see how copy files are used.

Before you can write COBOL programs, you need to learn about how data is defined and processed.

Data is defined in the same way in all three sections within the DATA DIVISION.

 File Section

 Working-Storage Section

 Linkage Section

Procedural statements to use that data are provided in the PROCEDURE DIVISION.

Data items are often referred to as fields. For example: a last name or a telephone number. In

COBOL, rules govern how you can define data items. This module looks at:

 How data items are named.

 Names that are reserved and cannot be used to identify your own fields.

 How data item characteristics can be defined using the PICTURE clause.

Module Objectives
On successful completion of this module you will be able to:

 Explain the different ways in which data can be defined.

 Define data items in a basic COBOL program.

 Use the COPY statement and the COPY… REPLACING statement.

 Use the REDEFINES clause to redefine data.

Defining Data
There are a number of questions to be asked:

 Where is the program data defined?

o The Data Division!

 Which sections are used?

o File Section

o Working-Storage Section

o Linkage Section

 The lowest level of data is the FIELD (often called an elementary item)

 How do we name the data fields?

 How do we define the data field types?

 Are there any rules governing the definition?

Copyright © Micro Focus 2015-2016. All rights reserved.

04 Data Representation

31

Data Names
Unlike in some programming languages COBOL encourages you to use long meaningful names. This

will help in the future when the program is maintained. For example you could choose names like:

Data Name restrictions

There are a number of restrictions when choosing a data name:

 Names must be between 1-30 characters

 Names must include at least one alphabetic character

 Names cannot include spaces, so replace spaces with hyphens

 The name cannot start or end with a hyphen

 Names can consist of the following characters:

o A-Z, a-z, 0-9, hyphen

 Ideally the name should be unique within the program, but it is possible to use the same

name in more than one location.

o It is a bad practice so please try to avoid any duplication

o It is not always possible – so be careful

 Reserved words are not permissible (Reserved words are names that COBOL itself uses such

as ADD, MOVE, READ etc.)

Examples of Valid Data Names

Here are examples of valid user-defined words.

 EMPLOYEE-GENDER – This is a meaningful name for an item.

 WS-VALID-RECORD-COUNT – Here the WS- prefix is being used to indicate that the item

is in the WORKING-STORAGE SECTION of the DATA DIVISION. A prefix such as this is almost

universally used.

Examples of Invalid Data Names

Here are examples of invalid data names.

 PERSONS_SURNAME Underline characters are not allowed.

 INPUT Reserved words are not allowed as a name. “INPUT” is a reserved word.

 MY-ADDRESS- You cannot terminate a data name with a hyphen

 CUSTOMER NAME Spaces in a data name are not allowed

Copyright © Micro Focus 2015-2016. All rights reserved.

04 Data Representation

32

Reserved Words
COBOL uses some words for special processing instructions. These words are known as reserved

words. The data item name must not be a reserved word, such as DATA. COBOL uses the word

DATA for itself, so “DATA” cannot be used as a data name. However, you can use a reserved word as

part of a larger name. “DATA-GROUP” would be acceptable.

The following give examples of some reserved words that cannot be used when naming data fields.

 All Division and Section names and the words “DIVISION” and “SECTION”

 AND, CLOSE, DISPLAY, FILE, INPUT, MOVE, MULTIPLY, NOT, OPEN, OR, PICTURE, RECORD,

SPACE

Note: Online Product Information provides a complete list of reserved words.

Data Hierarchy
Defining a field in the DATA DIVISION requires a specific data hierarchy: either at a Group Level or a

subordinate Elementary Level.

When describing data, we see not only the size of different data fields, but also how they relate to

each other. This is done through level numbers.

 The level numbers aid in displaying the hierarchy

 Indenting aids in displaying the hierarchy is optional.

 Leaving gaps in the numbering allows later insertion of extra levels.

 The 01 level must be positioned in “Area A” and terminated by a period.

 The other data fields must be in “Area B” and terminated by a period.

The following example illustrates this:

Copyright © Micro Focus 2015-2016. All rights reserved.

04 Data Representation

33

Data items defined above are either elementary items or group items.

Elementary items

EMPLOYEE-TITLE is an elementary 3 character data item

EMPLOYEE-INITIALS is an elementary 4 character data item

EMPLOYEE-SURNAME is an elementary 30 character data item

EMPLOYEE-GENDER is an elementary 1 character data item

EMPLOYEE-ADDRESS-LINE(1) is an elementary 20 character data item

EMPLOYEE-ADDRESS-LINE(2) is an elementary 20 character data item

EMPLOYEE-ADDRESS-LINE(3) is an elementary 20 character data item

EMPLOYEE-ADDRESS-LINE(4) is an elementary 20 character data item

Group items

EMPLOYEE-ADDRESS is an 80 character group item containing 4 recurring fields

EMPLOYEE-NAME is a 37 character group item containing 3 fields

EMPLOYEE-RECORD is a 118 character group item containing 3 fields (2 of which are

 themselves group items)

The PICTURE Clause
COBOL provides a method of specifying the characteristics of data items. Data items referenced as

Elementary Level items use the PICTURE clause to specify their characteristics. PICTURE is most

often abbreviated as PIC.

PICTURE clauses are very closely related to the concepts of data hierarchy as PICTURE clauses are

used only with Elementary Level items.

The PICTURE clause provides information about the type of data stored and the size of the storage

area for the item. For example

PIC X(3) The X represents alphanumeric data.

PIC A(3) The A represents alphabetic data.

PIC 9(4) The 9 represent numeric data

The (3) and (4) represent the number of characters in the field.

Note: PIC X(3) is exactly the same as PIC XXX.

Copyright © Micro Focus 2015-2016. All rights reserved.

04 Data Representation

34

The following shows further examples of picture clauses:

Literals (both numeric and alphanumeric) and be applied to data items when defining these. For

example is the code example the word “Hello” is a literal value of DATA-FIELD4.

Alphabetic Data Fields

Use the PIC A syntax to identify a field as alphabetic. You could use format 1 or format 2.

Format 1
 01 DATA-FIELD1 PIC A(3).

Format 2
 01 DATA-FIELD1 PIC AAA.

In Format 2 each of the three A’s identifies the storage for one character. The 3 in the first format is

merely another way to write this.

Alphanumeric Data Fields

Fields containing letters, numbers, and spaces are identified by PIC X.

 01 DATA-FIELD2 PIC X(3). or

 01 DATA-FIELD2 PIC XXX.

Numeric Data Fields

Define a field containing all numbers along with optional + or – sign as numeric data by using the PIC

9999 clause. Each 9 represents one digit.

 01 DATA-FIELD3 PIC 9(4). or
 01 DATA-FIELD3 PIC 9999.

Numeric fields can be up to a maximum of 31 digits.

Always make the definitions for numeric fields large enough to accommodate any possible number.

If a field needs to hold 1 million, many programmers will at first define this in a PIC 9(6) field. Such a

field will hold 999,999 with ease. However, adding one sets the field to zero, as the leading ‘1’ is lost

to the left – probably not what is needed.

Decimal Values

In the PICTURE clause, a V represents the decimal point, but takes up no space within the data item

– it is an “implied” decimal point position.

 01 EMPLOYEE-SALARY PIC 99999V99.

Copyright © Micro Focus 2015-2016. All rights reserved.

04 Data Representation

35

Each 9 after the V represents a digit after the decimal point. So, an EMPLOYEE-SALARY would

appear as $50000.00, two digits after the decimal point. Alternatively, you could write this as:

 01 EMPLOYEE-SALARY PIC 9(5)V9(2).

Negative Numbers

The notation of 9(5)V99 allows only for zero or positive values. However, if we needed to allow for

negative numbers, for example, for a customer’s account balance, we would say something like the

following.

 01 CUSTOMER-BALANCE PIC S9(5)V99.

S stands for ‘signed’. The sign is stored on the data item itself and does not take an extra byte.

Literals

Literals are used to give data items specific values, either numeric values (for example, 53 or 2) or

alphanumeric values (for example, “Hello”). Literals represent the actual contents of the data rather

than the name of the data item.

 03 DATA-FIELD4 PIC X(6) Value 'Hello '.
 03 AMOUNT-FIELD PIC 9(4) Value 5678.

The following rules apply to using numeric literals in COBOL programs.

Numeric literals must be 1–31 digits.

 A + or – sign can be included, but only at the left.

 A decimal point can be included, but not at the end of the literal.

The following rules apply to using alphanumeric literals in COBOL programs.

 Alphanumeric literals can contain up to 268,434,912 characters.

 Surround the literal with either single or double quotation marks (for example, “USA” or

‘USA’).

Handling numeric data

Numeric data is quite variable, it can be held as:

 Integers; small and large number

 It can be held in decimal format

 The number to be stored may be positive or negative

 It may contain currency, dates, time or telephone numbers

Examples:

Copyright © Micro Focus 2015-2016. All rights reserved.

04 Data Representation

36

Exercise 1
1. In Visual Cobol to Eclipse switch the workspace to

C:\COBOLClass_Eclipse\Projects\04_01_Data_Representation.

2. Use the DataRep1.cbl to add a record layout for a company employee. There is already a

record there for CUSTOMER. So add a new record for EMPLOYEE to include the following

data fields:

a. Title (3 characters or Bytes)

b. Initials (4 bytes)

c. Surname (30 bytes)

d. Gender (1 byte)

e. Address lines (4 lots of 30 bytes)

f. Postal code (8 bytes)

3. Add a Salary field for the employee to hold 5 bytes of before decimal point and 2 after

4. Change the layout to ensure the address lines are grouped

5. Change the layout to ensure the name can be accessed as one unit

6. How long is the record layout in bytes?

If you require a solution program to the above exercise, DataRep2.cbl is contained in the same

folder as DataRep1.cbl.

The FILLER clause
Maybe you are interested only in parts of a Group Level data item.

Looking at our employee record again, let’s say that we have to write a program that examines only

the one-byte field containing the GENDER value, and we are not interested in any of the preceding

or following fields.

However, as this is at byte 38 — the previous data fields were defined as PIC X(3), PIC X(4), and PIC

X(30) — the structure below is incorrect. This will be pointing at byte 1 of the group field, not byte

38.

 01 EMPLOYEE-RECORD.
 03 EMPLOYEE-GENDER PIC X.

Since for this case we are not interested in those first 37 bytes, we can use a FILLER as shown next.

 01 EMPLOYEE-RECORD.
 03 FILLER PIC X(37).
 03 EMPLOYEE-GENDER PIC X.
 03 FILLER PIC X(135).

Copyright © Micro Focus 2015-2016. All rights reserved.

04 Data Representation

37

Use a FILLER clause to show that data is present, but you have no interest in accessing it. FILLER

clauses can be found in almost every program.

Instead of saying FILLER, you can omit the name of the data item, as shown next. This is treated in

exactly the same way by the compiler.

 01 EMPLOYEE-RECORD.
 03 PIC X(37).
 03 EMPLOYEE-GENDER PIC X.
 03 PIC X(135).

The USAGE clause
Previously, we have defined data characteristics using the PICTURE clause.

Next we look at ways to indicate different storage methods when defining data items.

This is done with the USAGE clause. The USAGE clause tells the computer how to represent numbers

internally. Here are some USAGE clauses:

 03 FIELD1 USAGE DISPLAY PIC 9(4).
 03 FIELD2 USAGE DISPLAY PIC 9(4) COMP.
 03 FIELD3 USAGE DISPLAY PIC 9(4) COMP-3.

By default, when usage is not specified, numeric data is held in the format we have seen previously,

as shown in the following example.

 01 RECORD-COUNTER PIC 9(4).

This is known as USAGE Display. The number is stored as one digit per byte, in just the same way as

an alphanumeric (PIC X) or alphabetic (PIC A) field. Such fields work perfectly well, in that you can

carry out any arithmetical operations on them that you wish.

Yet, other methods of storing numeric data are more efficient (the calculations take place more

rapidly) and the data takes up less room. Programmers tend to use such data types for internal data

items (ones say in WORKING-STORAGE).

Let us look at three ways in which a data item that needs to hold up to 9,999 can be stored. (On

some compliers there are other variants too such as COMP-5 and COMP-X). Where the word COMP

is an abbreviation of COMPUTATIONAL

Usage Display Format – PIC 9(4)

Usage Binary Format – PIC 9(4) COMP

Usage Packed Decimal Format – PIC 9(4) COMP-3

Usage DISPLAY

 The base form is USAGE Display,

 01 RECORD-COUNTER PIC 9(4).

 Has a value range from 0000 to 9999

 It can be used for calculations and any other numeric operations

Copyright © Micro Focus 2015-2016. All rights reserved.

04 Data Representation

38

 This allocates 4 bytes to store the number

This method (Usage Display) allocates one byte per digit, which is what we are familiar with. If the

number contained “1234”, it would be stored like this.

00110001 00110010 00110011 00110100 in binary

31 32 33 34 in hex

Usage BINARY

 This format allocates the number of “Bits” to the field for storage

 01 RECORD-COUNTER PIC 9(4) USAGE COMPUTATIONAL.

Or more often defined as the abbreviated form

 01 RECORD-COUNTER PIC 9(4) COMP.

Or

 01 RECORD-COUNTER PIC 9(4) BINARY.

 Then rounds up to next whole byte

 So a number 9,999 can be held in 14 bits

 8 bits to a byte

 On rounding up we will use 2 bytes

 Has a value range from 0000 to 9999

 It is more efficient for numeric operations

The Binary Format method allocates the actual number of bits needed to hold the maximum number

(9,999) and then rounds that up to the next byte. So, 9999 (binary 10011010101011) can be held in

14 bits and would occupy 2 bytes (16 bits). The number “1234” would be stored as shown in the

following.

10011010010 in binary

04D2 in hex

Storing data in binary numeric fields is the most efficient.

However, there is a tradeoff for gaining efficiency in this way.

It is more difficult to know how much space a COMP numeric field requires, for example, if the field

is in a record.

The following lists the space required for various COMP fields on the PC (not mainframe).

PIC 9 or PIC 99 COMP 1 byte

PIC 999 or PIC 9(4) COMP 2 byte

PIC 9(5) or PIC 9(6) COMP 3 bytes

PIC 9(7), PIC 9(8) or PIC 9(9) COMP 4 bytes

Copyright © Micro Focus 2015-2016. All rights reserved.

04 Data Representation

39

PIC 9(10) or PIC 9(11) COMP 5 bytes

PIC 9(12) , PIC 9(13) or PIC 9(14) COMP 6 bytes

PIC 9(15) or PIC 9(16) COMP 7 bytes

PIC 9(17) or PIC 9(18) COMP 8 bytes

Signed fields are exactly the same size (the number is held in two’s complement format). A decimal

number is stored according to its total number of digits, for example a PIC 9(6)v9(4) will fit in 5 bytes.

Usage Packed Decimal

The third method (Packed-Decimal Format) is in some ways a hybrid between the first two.

The number is stored or packed more compactly than in display format, and it can be accessed with

most of the extra efficiency of a binary field, yet it is still possible to see its value if you look at the

field’s hex representation.

The space allocated is one half byte for each digit and one half byte for the sign (whether the field is

signed or not). If necessary, the number of bytes is then rounded up to the next whole number.

An example will make things clearer. A data item to hold 9(4) COMP-3 will consist of two and a half

bytes – four half bytes for the digits and half a byte for the sign. The two and a half is then rounded

up to three bytes. The number ‘1234’ would be stored as follows.

00000001 00100011 01101111 in binary

01 23 4F in hexadecimal

In the example above note the ‘F’ for the sign. If a number is unsigned, as here, then this last half

byte will always be hex F (binary 1111). If the number is signed, then the last half byte will be one of

the following:

If the number is positive, hex C (binary 1100) with the “C” representing “Credit.”)

If the number is negative, hex D (binary 1101) with the “D” representing “Debit.”

To calculate the length of a COMP-3 field, divide the number of digits (PIC 9s) by 2, and then round

up to the next whole byte if necessary.

The VALUE Clause
It is often useful to be able to preset the value of one or more data items, so that these values are in

place before any code in the PROCEDURE DIVISION is executed. This is done with the VALUE clause

along with literals or constants.

Let’s look at a couple of examples.

 01 WS-ITEMS.
 03 WS-NAME PIC X(20) VALUE 'SMITH'.
 03 WS-SALARY PIC 9(6)V99 VALUE 27500.
 03 WS-AGE PIC 99 VALUE ZERO.

The VALUES shown in lines 3 and 4 are known as numeric literals. In the case of PIC X or PIC A fields,

the values must be enclosed in quotes.

Copyright © Micro Focus 2015-2016. All rights reserved.

04 Data Representation

40

In the above example, WS-NAME will now contain “SMITH” followed by fifteen spaces.

WS-SALARY will contain 027500.00. In other words, if the value of the literal does not fill up the

field, then character fields are padded with spaces on the right and numeric fields padded with zeros

on the left.

Entering too large a value into a field (for example, giving WS-NAME a value of “General Dwight D

Eisenhower”) causes the COBOL compiler to identify an error.

Also, use a numeric literal that matches the PICture of the item. Since WS-SALARY is defined as PIC

9(6)V99, (the first 9 indicating a numeric data type), it would be wrong to assign SALARY a VALUE of

“NONE” (which is an alphabetic value).

Figurative Constants

In addition to numeric literals, you can use VALUE clauses with figurative constants. Figurative

constants preset data items to useful values. The following figurative constants are available.

 SPACE or SPACES (which mean the same thing)

 ZERO or ZEROS (which mean the same thing)

 LOW-VALUES

 HIGH-VALUES

 ALL “literal”

The SPACES Figurative Constant

SPACES, the easiest figurative constant to understand, is designed for use on alphanumeric or

alphabetic fields. Ensure that such fields are cleared out before any data manipulation takes place.

The following clause includes the SPACES figurative constant.

 03 WS-NAME PIC X(20) VALUE SPACES.

The next example illustrates a more problematic use of SPACES.

 01 WS-RECORD.
 03 WS-NAME PIC X(20).
 03 WS-ADDRESS PIC X(100).
 03 WS-SALARY PIC 9(5)V99.

You could try to “clear” the record using:

MOVE SPACES TO WS-RECORD

Group fields are always regarded as being alphanumeric (even if all the Elementary Level fields are

numeric). In this case, WS-SALARY will end up set to spaces, which might not be appropriate.

The way in which you can clear WS-RECORD, so that all alpha and alphanumeric items are cleared to

SPACES and the numeric items are zeroed is:

INITIALIZE WS-RECORD

Copyright © Micro Focus 2015-2016. All rights reserved.

04 Data Representation

41

The ZERO Figurative Constant

ZERO (or ZEROES) can be similarly thought-provoking. ZERO will put that value in the field or fields

referred to by the VALUE clause and format it using the PICture information.

The following clause will move “character zero” (hex 30) into each of the bytes of WS-NUMBER.

 03 WS-NUMBER PIC 9(4) VALUE ZERO.

Another example will result in binary zero (hex 00) throughout the two bytes of the field, as shown

next

 03 WS-BIN-NUMBER PIC 9(4) COMP VALUE ZERO.

This results in a nasty little trap that is very easy to fall into.

In the following sample, the programmer is trying to set all four items in the group to zero. Instead,

ZERO gets moved to the group. Because the group is alphanumeric, hex 30 is moved to each of the

eight bytes, setting all the items to 2336! (hex 3030). Note: Each field defined in the example as PIC

9(4) COMP is stored as 2 bytes.

 01 WS-NUMBERS.
 03 WS-NUM-1 PIC 9(4) COMP.
 03 WS-NUM-2 PIC 9(4) COMP.
 03 WS-NUM-3 PIC 9(4) COMP.
 03 WS-NUM-4 PIC 9(4) COMP.

So; MOVE ZERO TO WS-NUMBERS will not put 0 into each of the individual fields.

The correct way to do this is:

INITIALIZE WS-NUMBERS

The LOW-VALUES Figurative Constant

To avoid the previous dilemma, you can also use the LOW-VALUES figurative constant, which sets a

field to its lowest possible value. Preset the group to “binary zero.” The following example shows

the other correct way of achieving the goal.

01 WS-NUMBERS.
 03 WS-NUM-1 PIC 9(4) COMP.
 03 WS-NUM-2 PIC 9(4) COMP.
 03 WS-NUM-3 PIC 9(4) COMP.
 03 WS-NUM-4 PIC 9(4) COMP.

MOVE LOW-VALUES TO WS-NUMBERS

Use LOW-VALUES to set a field or fields to its lowest possible value hex 00. HIGH-VALUES is the

opposite. HIGH-VALUES moves hex FF to every byte of the field or fields in question.

This of course would be no use to us if the group item contained some alphanumeric field(s). So as a

general rule you should use INITIALIZE to clear out a group to its default empty values (i.e. SPACES in

alpha and alphanumeric fields and zero in numeric fields).

The ALL “literal”

This fills a field with a character value, as shown in the following example.

Copyright © Micro Focus 2015-2016. All rights reserved.

04 Data Representation

42

 03 WS-STARS PIC X(30) VALUE ALL '*'.
 03 WS-LINE PIC X(80) VALUE ALL '_'.

Important note: Use the VALUE clause, as shown above, only in the Working-Storage Section. It has

no relevance in the FILE section or the LINKAGE section since these fields are populated from outside

(either by reading from a file or from a calling program).

The REDEFINES clause
The REDEFINES clause gives you a way to manipulate data with flexibility. It allows you to specify a

different PICTURE clause for a data item defined previously.

Let’s say that we have a group of items in Working-Storage, perhaps copied in from a record that

was read. One of those fields is normally a numeric birthdate.

However, if the birthdate is not known, the field needs to be alphanumeric, so that it can contain

some other value, as shown in the following code.

 01 WS-RECORD.
 03 WS-NAME PIC X(30).
 03 WS-DOB PIC 9(8).
 03 WS-DOB-XX REDEFINES WS-DOB PIC X(8).

The redefining item must immediately follow the one being redefined. Redefine items at any level

(except 01 in the File Section, as we shall see later). A redefined item can have a VALUE clause, but

the redefining clause cannot.

The COPY statement
What happens when a data item needs to be defined in more than one program?

Record layouts may be very complex and contain hundreds of coding lines. Is it wise to repeat them?

Sometimes Working-Storage items will be common across different programs. How do you handle

these items?

Rather than repeat the definition in each case, we place these definitions in an external copy file and

then we use the COPY statement in the program.

Let’s look at an example where all programs in a payroll suite need the following same definitions for

working storage counters.

 01 WS-COUNTERS.
 03 WS-NUMBER-OF-EMPLOYEES PIC 9(4).
 03 WS-TOTAL-SALARY PIC 9(8)V99.
 03 WS-TOTAL-TAX PIC 9(7)V99.
 03 WS-TOTAL-DEDUCTIONS PIC 9(6)V99.

When code needs to be shared in this way, the best solution is to store the relevant lines in a

copyfile, that is, a text file that can be automatically copied into the program.

In the following example, the file was saved as counters.cpy. The COPY statement is typically

inserted in Area A, though it is also valid in Area B.

 COPY COUNTERS.CPY

Copyright © Micro Focus 2015-2016. All rights reserved.

04 Data Representation

43

Sometimes full stops (periods) are absolutely necessary. The full stop at the end of a COPY

statement must never be omitted. In the above example, such an omission would cause the

compiler to be unable to compile the statement following the COPY.

The COPY REPLACING statement

You can create a “generic” copy file, where the actual names of the data items can be modified to

suit the particular program (rather than having to use the names in the copy file). This is done using

tags. The copy file can then be imported into a program, and the (TAG) element can be replaced

with another value. The word TAG is just an example; it is not a keyword.

First, we set up a copy file as follows. We named it “ws.cpy”.

 01 (TAG)-NUMBERS .
 03 (TAG)-NUM-1 PIC 9(4).
 03 (TAG)-NUM-2 PIC 9(6).
 03 (TAG)-NUM-3 PIC 9(5).

In the example below, the file is imported twice.

 COPY WS REPLACING ==(TAG)== BY ==WS01==.
 COPY WS REPLACING ==(TAG)== BY ==WS02==.

This makes the following data items available.

 01 WS01-NUMBERS.
 03 WS01-NUM-1 PIC 9(4).
 03 WS01-NUM-2 PIC 9(6).
 03 WS01-NUM-3 PIC 9(5).

 01 WS02-NUMBERS.
 03 WS02-NUM-1 PIC 9(4).
 03 WS02-NUM-2 PIC 9(6).
 03 WS02-NUM-3 PIC 9(5).

While copy files are commonly used to hold data hierarchies, such as records, they can also be used

to hold executing code, that is, statements that are found in the Procedure Division.

Exercise 2
1. In Visual Cobol switch the workspace to

C:\COBOLClass_Eclipse\Projects\04_02_Data_Representation.

2. Look at the program to see how the same copy file has been used twice in the program. In

the 2 versions the ‘tag’ has been replaced with different values.

3. You can look at the contents of the copy file by double clicking the WS.CPY file the COBOL

tab.

4. Execute the program as before to see how the different versions of the copy file are used.

5. How would you initialize the copy file field contents with zeroes at run-time?

6. Reset the values of the counters to zeroes during the execution to simulate a restart of the

program.

7. What would be the effect of setting the WS01-Numbers group to Low-Values?

Copyright © Micro Focus 2015-2016. All rights reserved.

04 Data Representation

44

Data item naming
It is suggested that data names should be unique, and this is very often easy to achieve. Sometimes

identical names can be used, as shown in the following example.

 01 WS-INPUT-AREA-1.
 03 EMPLOYEE-NAME PIC X(20).
 03 EMPLOYEE-ADDRESS PIC X(60).
 03 EMPLOYEE-SALARY PIC 9(6)V99.

 01 WS-INPUT-AREA-2.
 03 EMPLOYEE-NAME PIC X(20).
 03 EMPLOYEE-DOB PIC 9(8).

The COBOL compiler tolerates any number of identically-named fields, until it has to distinguish

between them. For example, the following statement from the Procedure Division will be flagged as

an error.

 MOVE 'VLAD THE IMPALER' TO EMPLOYEE-NAME

To anticipate a later portion of this course, the MOVE statement moves a value (“VLAD THE

IMPALER”) to a data item (EMPLOYEE-NAME).

Here the compiler cannot recognize the EMPLOYEE-NAME, as the data name is not unique.

The solution is to qualify the data name, making it unique, as shown by the addition of

 OF WS-INPUT-AREA-2 e.g.

 MOVE 'VLAD THE IMPALER' TO EMPLOYEE-NAME OF WS-INPUT-AREA-2

Module Summary
On completion of this module you can now:

 See the different ways in which data can be defined

 Define data items in a basic COBOL program

 Use the COPY statement and the COPY… REPLACING statement

 Use the REDEFINES clause to redefine data

Further Optional Exercises
You will find a number of further optional exercises which are appropriate at the end of this module.

When you decide to do these (either now or after, as a refresher) you should open the Solutions

shown below and then work your way through the sample program(s) in the solution.

The recommended way is to execute in Debug Mode to fully understand what the code is doing and

what the data item values are. To do this, right-click on the program name and select Debug

As/COBOL Application

The workspaces which are appropriate are:

 04_03_ Numeric initialization

 04_04_Field type moving

Copyright © Micro Focus 2015-2016. All rights reserved.

04 Data Representation

45

 04_05_Numeric moving

Quick Quiz
1. Which of the following statements are true?

a. There are no data name restrictions.

b. Level Numbers are used to group records.

c. “PIC S9(5)v9(3)” represents an integer field.

d. COBOL Reserved Words can’t be used to identify data names

e. None of the above

2. Which statement(s) are true about the FILLER clause?

a. FILLER can only be used in working-storage section.

b. FILLER can be used in any of the data division sections

c. The word FILLER can be replaced with spaces.

d. You can move data into a FILLER in procedure division

e. None of the above

3. Which is true of Numeric fields?

a. Numeric fields are always signed

b. Numeric fields are always stored as binary

c. Numeric fields have a maximum size

d. None of the above

4. Which of the following is true about figurative constants?

a. Used in data division

b. Not allowed

c. Is one of a fixed number of values

d. Can only be applied to numeric data items

5. Which of the following are valid data names?

a. CUSTOMER-NUMBER

b. Customer-Number

c. CUSTOMER_NUMBER

d. CUSTOMER-NUMBER-

e. 1234

f. C-1234

g. All the above

h. None of the above

6. Which is true of REDEFINES?

a. Redefines is used only in the environment division

b. Redefines is mainly used to use the same field with different pictures

c. Redefines is used mainly in procedure division

d. All the above

e. None of the above

7. Which of the following is true about COPY?

a. COPY is used to refer to an external file containing COBOL code

b. COPY is used to redefine a data item

c. COPY is used in procedure division to move one data item to another

d. All the above

Copyright © Micro Focus 2015-2016. All rights reserved.

04 Data Representation

46

e. None of the above

Copyright © Micro Focus 2015-2016. All rights reserved.

05 Basic Verbs

46

05 Basic Verbs

Introduction
This module will deal with some of the basic “verbs” that you will find in the procedure division of a

COBOL program.

Do you recall that the PROCEDURE DIVISION is the final division in the program?

It is where the logic code is written.

The PROCEDURE DIVISION heading starts in Area A

Code written in this division should be

 contained in sections and paragraphs

 each section and paragraph heading starts in Area A

In COBOL each line of procedural code begins with a “verb”.

A “verb” is effectively the start of an instruction to perform some kind of operation. There is a strict

set of “verbs” that COBOL uses. Most of them we would understand as a “verb” in the English

language, but others are not strictly English language verbs.

Module Objectives
On successful completion of this module you will be able to:

 Explain the DISPLAY, ACCEPT, STOP, MOVE, GO TO and PERFORM verbs

 Describe how the following verbs direct program logic

o PERFORM ...

o PERFORM … UNTIL

o GO TO

Simple Example
We will start by using a very simple example program. This example can be found by setting the

workspace to 05_01_Basic_Verbs

The program here contains the following code:

Copyright © Micro Focus 2015-2016. All rights reserved.

05 Basic Verbs

47

In this example, the Procedure Division contains a single section, which contains a single paragraph.

The paragraph contains 9 statements, which in turn use 4 “verbs”. The verbs being used are:

 MOVE This copies the string to the target data item

 DISPLAY This displays a value on the screen, at the next line

 ACCEPT This requires you to enter a value on the screen and places the value into

 the data item

 STOP The first Stop display a message requiring you to press <CR>

 The Stop Run, terminates the program

This program should be run by pressing F5 to see the results of the execution. The result of running

will be:

Where “George Washington” was the name you entered on the screen.

Statement Termination
Up until the mid-1980s it was common practice to terminate each statement with a full stop

(period). Indeed in many cases it was essential to do this.

Since the mid-1980s, additional syntax was introduced into COBOL which meant that statement

termination was done by “statement terminators”.

Let’s see an example using the IF verb (Yes IF is a “verb” in COBOL).

Copyright © Micro Focus 2015-2016. All rights reserved.

05 Basic Verbs

48

Pre 1985

 IF CUSTOMER-AGE < 21
 DISPLAY 'CUSTOMER TOO YOUNG'.

Post 1985

 IF CUSTOMER-AGE < 21
 DISPLAY 'CUSTOMER TOO YOUNG'
 END-IF

Another example might be:

Pre 1985

 IF CUSTOMER-AGE < 21
 IF PARENTS-CONSENT = 'YES'
 DISPLAY 'CONSENT GIVEN'
 ELSE
 DISPLAY 'CUSTOMER TOO YOUNG'.

 This period terminated both IFs.

Post 1985

 IF CUSTOMER-AGE < 21
 IF PARENTS-CONSENT = 'YES'
 DISPLAY 'CONSENT GIVEN'
 ELSE
 DISPLAY 'CUSTOMER TOO YOUNG'
 END-IF
 END-IF

On the face of it this does not seem to be much different, but consider how this post 1985 statement

could have been coded pre 1985

 IF CUSTOMER-AGE < 21
 IF PARENTS-CONSENT = 'YES'
 DISPLAY 'CONSENT GIVEN'
 END-IF
 ELSE
 DISPLAY 'CUSTOMER TOO YOUNG'
 END-IF

Where could you possibly place the period, since there are 2 nested IF statements?

Even today, there are still many relatively newly written COBOL programs using the period to

terminate conditional statements.

This is NOT the way that we recommend, although we still have to be able to maintain programs

that were written that way. So we need to be aware that a period can still be used to terminate a

statement (In particular a conditional statement).

In answer to the question above about placing the period, one way that this used to be achieved is

with the GO TO statement. A clumsy example would be:

 START-IF.

Copyright © Micro Focus 2015-2016. All rights reserved.

05 Basic Verbs

49

 IF CUSTOMER-AGE < 21
 GO TO TEST-PARENT
 ELSE
 DISPLAY 'CUSTOMER TOO YOUNG'.
 IF-CONTINUE.

 TEST-PARENT.
 IF PARENTS-CONSENT = 'YES'
 DISPLAY 'CONSENT GIVEN'.
 GO TO IF-CONTINUE.

Very messy !! (There are simpler ways, but none are so clear as shown in the post 1985 example

above)

The use of the GO TO statement was prolific prior up to 1985. Since 1985 there is never a need to

use a GO TO statement. There is always a better, structured way of achieving this.

The use of GO TO is a recipe for making error filled and hard to maintain programs. It is still

supported, but our recommendations are that, if you must use it, then think very carefully of its

implications for maintainability.

However the only consideration is that the COBOL compiler must be able to tell where one

statement ends and the next begins. This yields the following rules.

The last statement in a paragraph or section must have a period or full stop, as shown in the

following example.

 SECTION-6 SECTION. *> [Section header]
 PARA-6. *> [Paragraph header]
 DISPLAY 'I JUST MOVED 10 TO THE TOTAL'.
 PARA-7. *> [End of paragraph]
 DISPLAY ' YOU ARE NOW ON PARA-7'
 IF A = B
 ADD 1 TO B
 END-IF.
 PARA-8.
 MOVE A TO B
 ADD 8 TO B.

Post 1985, any statement that is immediately followed by another verb is implicitly terminated, so

it does not need a period or full stop (unless it is the last statement in a paragraph or section).

My own personal preference (and that of many others) is to terminate paragraphs as shown below

with a single period on a line of its own, at the end of a paragraph:

 SECTION-6 SECTION.
 PARA-6.
 DISPLAY 'I JUST MOVED 10 TO THE TOTAL'
 .
 PARA-7.
 DISPLAY ' YOU ARE NOW ON PARA-7'
 IF A = B
 ADD 1 TO B
 END-IF
 .
 PARA-8.
 MOVE A TO B

Copyright © Micro Focus 2015-2016. All rights reserved.

05 Basic Verbs

50

 ADD 8 TO B

 .

All statements can end with a period or full stop, so it is acceptable to terminate in this way, but not

recommended in “Modern” COBOL.

Commonly used verbs
The following looks at the syntax and behavior of some commonly used verbs such as:

 DISPLAY

 ACCEPT

 MOVE

 PERFORM ...

 PERFORM ... UNTIL

 STOP

DISPLAY verb

DISPLAY can be used to output the value of any combination of data items and literal.

In the example below (“DISPLAY WS-NAME”), DISPLAY sends the contents of the field WS-NAME to

the screen.

ACCEPT verb

ACCEPT is the opposite of DISPLAY. It is used to allow the person running the program to input a

value into a data item.

In the example at below (”ACCEPT WS-NAME”), ACCEPT copies the value on the screen into the

contents of the field named WS-NAME.

Copyright © Micro Focus 2015-2016. All rights reserved.

05 Basic Verbs

51

MOVE verb

Contrary to the English use of the word move, MOVE copies a value from a data item (or a literal or

figurative constant) to one or more data items. The field which is the source of the ‘MOVE’ remains

unchanged.

For example, if a program read a record and stored it, you could use MOVE to move the data from

the input storage area to the output storage area. Here is a simple form of MOVE.

 MOVE DATA-SEND-FIELD TO DATA-TARGET-FIELD

Then sending field could contain one of the following

 Numeric literal (e.g. 0 or 2004)

 Character literal (e.g. “Hello”)

 Figurative constants (like the keywords SPACES or ZERO)

 Data item (for example, WS-NAME or WS-COUNTER)

Numeric literal MOVE

In the examples below the numeric literal zero is moved to field WS-TOTAL and 2004 is moved to the

field WS-YEAR.

 MOVE 0 TO WS-TOTAL
 MOVE 2004 TO WS-YEAR

Character literal MOVE

In this example the character literal HELLO is moved to the field WELCOME-MESSAGE.

 MOVE 'HELLO' TO WELCOME-MESSAGE

Figurative constant MOVE

These two examples use the figurative constants SPACES and ZERO.

 MOVE SPACES TO WS-CHARACTER-FIELDS
 MOVE ZERO TO WS-TOTAL-2 WS-TOTAL-3

In the examples above spaces are moved to the field

WS-CHARACTER_FIELDS, and zero is moved to two fields: WS-TOTAL-2 and WS-TOTAL-3.

Copyright © Micro Focus 2015-2016. All rights reserved.

05 Basic Verbs

52

Data item MOVE

Here are two examples showing how data items can be moved.

 MOVE WS-NAME TO OUTPUT-NAME-1 OUTPUT-NAME-2

In this example the value of field WS-NAME is copied to two fields: OUTPUT-NAME-1 and OUTPUT-

NAME-2.

 MOVE WS-COUNTER to STORE-COUNTER

In this example the value of the field WS-COUNTER is copied to the field STORE-COUNTER.

MOVE verb logistics for character fields

MOVE works in a totally predictable way. MOVEing to a character field (whether from a character or

numeric one) causes the target field to fill up from the left.

If the target field is longer, the remaining byte(s) on the right will be space-filled.

If the target field is too short, the original value will be truncated from the right. The following

illustrates the how sending field will start filling up the target field starting from the left.

Sending and Target Field Lengths – send longer than target

Consider the following example when the target field length is more restricted than the sending field

length.

 01 NAME-IN PIC X(9) VALUE "ELIZABETH".
 01 NAME-OUT PIC X(3) VALUE "AMY".

 MOVE NAME-IN TO NAME-OUT

One would think that “ELIZABETH” becomes assigned to NAME-OUT; however, the PIC X(3) limits the

target field to “ELI” only.

Sending and Target Field Lengths – send longer than target

Consider the following example when the target field length is longer than the sending field length.

 01 NAME-IN PIC X(9) VALUE "ELIZABETH".
 01 NAME-OUT PIC X(3) VALUE "AMY".

 MOVE NAME-OUT TO NAME-IN

After the MOVE, the NAME-IN field will contain "AMY "

MOVE verb logistics for numeric fields

Basically MOVEing a numeric field to a numeric field, the move always aligns on the decimal place.

So in some cases this will result in the truncation of the result, or the removal of the some of the

decimal places. E.g.

 01 NUM1 PIC 9(4)V99.
 01 NUM2 PIC 99V99.
 01 NUM3 PIC 9.

Copyright © Micro Focus 2015-2016. All rights reserved.

05 Basic Verbs

53

 01 NUM4 PIC V99.
 01 CHAR1 PIC XX.
 01 CHAR2 PIC X(10).

 MOVE 1234.56 TO NUM1
 MOVE NUM1 TO NUM2, NUM3, NUM4, CHAR1, CHAR2

These MOVEs will result in the data items containing the following values:

 NUM1 1234.56

 NUM2 34.56

 NUM3 4

 NUM4 .56

 CHAR1 “12“

 CHAR2 “123456 “

PERFORM Verb

Up until now the course has shown programs that execute in the order that the statements appear.

However, you can control the order of execution sequence using the PERFORM verb. You can

control execution using several formats of the PERFORM verb, including using it with an IF condition

or using PERFORM UNTIL a condition occurs.

The following shows how to use PERFORM

PERFORM paragraph-header

PERFORM identifies the instruction to be done on paragraph-header, which is the name of a sub-

process to be executed. The sub-process must also be written in your program. Here is an example.

In the first line of the procedure division in the following program, the verb PERFORM executes INIT-

PARA, a sub-process that begins 3 lines further on. Upon completion of the INIT-PARA, the execution

point returns to the statement after the PERFORM INIT-PARA

WORKING-STORAGE SECTION.
01 WS-TIMES PIC 9(4).
01 WS-NUM1 PIC 9(4).
01 WS-NUM2 PIC 9(4).
01 WS-NUM3 PIC 9(6).
PROCEDURE DIVISION.
PROG.
 PERFORM INIT-PARA
 PERFORM LOOP-PARA WS-TIMES TIMES
 PERFORM END-PARA.
INIT-PARA.
 DISPLAY "A SIMPLE MULTIPLIER"
 DISPLAY "HOW MANY TIMES (1 TO 6)?"
 ACCEPT WS-TIMES
 IF (WS-TIMES > 6) OR (WS-TIMES < 1)
 MOVE 1 TO WS-TIMES
 END-IF.
LOOP-PARA.
 DISPLAY "FIRST NUMBER?"
 ACCEPT WS-NUM1
 DISPLAY "SECOND NUMBER?"
 ACCEPT WS-NUM2
 MULTIPLY WS-NUM1 BY WS-NUM2 GIVING WS-NUM3

Copyright © Micro Focus 2015-2016. All rights reserved.

05 Basic Verbs

54

 DISPLAY "PRODUCT OF " WS-NUM1 " AND " WS-NUM2
 " IS " WS-NUM3 .
END-PARA.
 DISPLAY "MULTIPLICATION DONE " WS-TIMES " TIME(S)"
 DISPLAY "THANK YOU FOR THAT"
 STOP RUN.

You can see this program in action if you change your workspace 05_02_Simple_Performs

NOTE: This program and later ones omit the IDENTIFICATION DIVISION and ENVIRONMENT DIVISION

when they are not needed. You will also see that this program does not use section in procedure

division. This is also fine.

The PERFORM Verb and Processing Loops

The verb PERFORM executes the paragraph, INIT-PARA. Control passes to INIT-PARA and the

program works through the INIT-PARA statements. The ACCEPT verb in INIT-PARA gets a value that

the program needs. Here, ACCEPT gets the number of times the main program loop will occur.

The program also contains an IF statement, as shown here.

 IF (WS-TIMES > 6) OR (WS-TIMES < 1)
 MOVE 1 TO WS-TIMES
 END-IF.

This logic states that if a user enters 0 or a number greater than 6 ignore it and substitute 1. (A later

module provides a more detailed discussion of the format of IF).

At the end of INIT-PARA we return to PROG, where the second statement appears: PERFORM LOOP-

PARA WS-TIMES TIMES. This paragraph executes a particular number of times (at the end of which

control returns to the PROG paragraph).

If we now look at the code in LOOP-PARA, we see two more ACCEPT statements, which give the

program the numbers needed for the MULTIPLY statement. There is more to MULTIPLY than can be

covered here, but we should be able to see that the statement calculates the product of two data

items, places it in a third data item, and then DISPLAYs it.

Note: Both the MULTIPLY and DIVIDE statements will be covered later. The Divide statement format

is very similar to the MULTPLY; DIVIDE one data field by a second data field placing the result in a

third data field.

 DIVIDE WS-NUM1 BY WS-NUM2 GIVING WS-NUM3

The whole paragraph will be PERFORMed as many times as WS-TIMES decrees.

Eventually, LOOP-PARA completes for the last time, and control passes to the last statement of the

PROG paragraph, which is PERFORM END-PARA. This statement initiates END-PARA. The END-PARA

paragraph contains two informational DISPLAYs and a STOP RUN. Note that there is no need to end

the program in PROG, making the STOP RUN the last statement in END-PARA as perfectly

acceptable.

The Verbs PERFORM … UNTIL and GO TO

Copyright © Micro Focus 2015-2016. All rights reserved.

05 Basic Verbs

55

COBOL offers two verbs, PERFORM and GO TO, to direct the logic of a program. For various reasons

PERFORM is far more likely to be seen in modern COBOL. GO TO in COBOL, as in other languages,

has acquired a bad reputation, because it has become associated with poor programming practice.

In truth, it is possible to write well- or badly-designed programs with either verb, but PERFORM

makes it easier to do the former.

You can use the PERFORM verb in several formats, including PERFORM…UNTIL. Use PERFORM …

UNTIL according to the following syntax.

 PERFORM PARAGRAPH-HEADER UNTIL [CONDITION]

We have looked at the simple use of PERFORM, which executes once. The PERFORM ... UNTIL

executes one or many times until the condition is true.

Here is an example of a program using PERFORM ... UNTIL. The output follows the program. In this

case the PERFORMs are of section names rather than the paragraph names in the previous example.

The choice is yours, but it is strongly recommended that you do not mix performs of paragraphs with

performs of sections. This can lead to hard to maintain and error prone code.

Note: Use comments liberally to make the code more understandable. The compiler ignores any line

with an asterisk (*) in column 7. Use this for comments.

 WORKING-STORAGE SECTION.
 01 WS-COUNTER PIC 9.
 PROCEDURE DIVISION.
 MAINLINE SECTION.
 START-UP.
 PERFORM INIT-SECT
 PERFORM LOOP-SECT UNTIL WS-COUNTER > 4
 PERFORM END-PARA
 STOP 'Press <CR> to stop'
 STOP RUN.
 *--
 INIT-SECT SECTION.
 INIT-PARA.
 DISPLAY "IN INIT PARA"
 MOVE ZERO TO WS-COUNTER.
 INIT-EXIT.
 EXIT.
 *--
 LOOP-SECT SECTION.
 LOOP-PARA.
 ADD 1 TO WS-COUNTER
 DISPLAY "DOING LOOP PARA...." WS-COUNTER.
 LOOP-EXIT.
 EXIT.
 *--
 END-SECT SECTION.
 END-PARA.
 DISPLAY "IN END PARA - STOPPING".
 END-EXIT.

 EXIT.

The output is:

Copyright © Micro Focus 2015-2016. All rights reserved.

05 Basic Verbs

56

You can look at this program by changing your workspace to 05_03_Simple_Performs2

This program illustrates the following interesting points.

PERFORM UNTIL is very commonly used, but the condition must become true at some point or the

program could loop forever. In this case, if the ADD 1 TO WS-COUNTER were not present, this would

happen.

PERFORM LOOP-SECT UNTIL WS-COUNTER > 4

By default, the UNTIL clause is tested before the loop. The loop happened five times, because

“greater than 4” becomes true only after the fifth iteration. When the program comes round for the

sixth time, “greater than 4” is now true

Another common mistake is for the test not to be met because it has been incorrectly specified. For

example, the following code would generate a perpetual loop if the salary paid never exactly

equalled 20,000

PERFORM LOOP-PARA UNTIL SALARY-PAID = 2000

A better test would probably be greater than some figure.

PERFORM LOOP-PARA UNTIL SALARY-PAID >= 2000

There is a different format of the verb,

PERFORM <paragraph or section> WITH TEST AFTER UNTIL <condition>.

This means that the <paragraph or section> will always be PERFORMed at least once. The default

version of PERFORM with the test before is very useful, as the loop will stop if the condition is never

true. For example, if you are reading records from a file, you might write pseudo-code such as

“perform process-record until there are no more records on the file.” The WITH TEST AFTER version

of the verb would assume that at least one record existed. So, if there were no records on the file, a

logic error would occur.

PERFORMing Paragraphs

Performing a single Paragraph is very efficient

Where a paragraph is a logical group of statements that perform a specific function

The paragraph is referenced by its heading name

Copyright © Micro Focus 2015-2016. All rights reserved.

05 Basic Verbs

57

When a series of paragraphs are to be executed then use the PERFORM...THRU... option

PERFORM B-INITIAL. [Single]

PERFORM B-INITIAL THRU D-END. [Series]

This Perform THRU option is not something which is used commonly in modern COBOL applications

but you will find extensive use of it in older legacy programs.

PERFORMing Sections

Performing a single section is also very efficient.

All the paragraphs within the section will be performed in sequence. E.g.

MY-MAIN SECTION.

PARA-1.

 MOVE A TO B

PARA-2.

PARA-3.

The statement:

PERFORM MY-MAIN

Will execute PARA-1, PARA-2, PARA-3 in sequence.

You would get the same result with:

PERFORM PARA-1 THRU PARA-3

Using Comments

It has already been said that you should use comments as much as possible in a COBOL program to

help with subsequent developers understanding the code.

A comment line is normally recognized by column 7 having an asterisk.

However, since 1985 you can also use what is known as the “in-line” comment.

In this case if you place the characters *> anywhere in the code, then the rest of the line, after *> is

regarded as a comment. E.g.

 MAINLINE SECTION.
 START-UP.
 PERFORM INIT-SECT *> This initializes the program
 PERFORM LOOP-SECT *> Do this 4 times
 UNTIL WS-COUNTER > 4
 PERFORM END-PARA *> This terminates the program
 STOP 'Press <CR> to stop'

Copyright © Micro Focus 2015-2016. All rights reserved.

05 Basic Verbs

58

STOP Verb

STOP is not issued on its own, it is most commonly written with RUN to terminate a program.

STOP RUN stops the current program

Any statements following STOP RUN in the same paragraph can never be executed

As you have seen in the preceding examples it is also used together with a literal. E.g.

 STOP "Press <CR> to continue"

This causes a pause in the program, while the user presses the <CR> key

COBOL program execution
The procedure division of a COBOL program is executed in sequence from first line to last line.

However the program execution can branch from place to place with the use of GO TO, IF, PERFORM

and other conditional statements

Let us first look at a program with no branching

e.g.

 PROCEDURE DIVISION.
 PROG.
 DISPLAY "IN PROG".
 PARA-1.
 DISPLAY "IN PARA 1".
 PARA-2.
 DISPLAY "IN PARA 2".
 PARA-3.
 DISPLAY "IN PARA 3".
 PARA-4.
 DISPLAY "IN PARA 4".
 PARA-5.
 DISPLAY "IN PARA 5".

In the above case the program will “drop through” the collection of paragraphs. The paragraph

names have no meaning (other than documentation).

The results of executing this code would be the following values are displayed on the screen:

IN PROG

IN PARA 1

IN PARA 2

IN PARA 3

IN PARA 4

IN PARA 5

A similar scenario would happen with sections. e.g.

 PROCEDURE DIVISION.
 SECT-1 SECTION.
 PROG.
 DISPLAY "IN PROG".
 PARA-1.

Copyright © Micro Focus 2015-2016. All rights reserved.

05 Basic Verbs

59

 DISPLAY "IN PARA 1".
 PARA-2.
 DISPLAY "IN PARA 2".
 SECT-2 SECTION.
 PARA-3.
 DISPLAY "IN PARA 3".
 PARA-4.
 DISPLAY "IN PARA 4".
 PARA-5.
 DISPLAY "IN PARA 5".

Just as in the case of the paragraph only example above, the program will “drop through” the

collection of sections and paragraphs. The section names and paragraph names have no meaning

(other than documentation).

The results of executing this code would be the following values are displayed on the screen:

IN PROG

IN PARA 1

IN PARA 2

IN PARA 3

IN PARA 4

IN PARA 5

If we change the first example of paragraphs only to include a GO TO:

 PROCEDURE DIVISION.
 PROG.
 DISPLAY "IN PROG"
 GO TO PARA-3.
 PARA-1.
 DISPLAY "IN PARA 1".
 PARA-2.
 DISPLAY "IN PARA 2".
 PARA-3.
 DISPLAY "IN PARA 3".
 PARA-4.
 DISPLAY "IN PARA 4".
 PARA-5.
 DISPLAY "IN PARA 5".

The results of executing this code would be the following values are displayed on the screen:

IN PROG

IN PARA-3

IN PARA-4

IN PARA-5

If we change the first example of paragraphs only to include a PERFORM:

 PROCEDURE DIVISION.
 PROG.
 DISPLAY "IN PROG"
 PERFORM PARA-3.
 PARA-1.
 DISPLAY "IN PARA 1".
 PARA-2.

Copyright © Micro Focus 2015-2016. All rights reserved.

05 Basic Verbs

60

 DISPLAY "IN PARA 2".
 PARA-3.
 DISPLAY "IN PARA 3".
 PARA-4.
 DISPLAY "IN PARA 4".
 PARA-5.
 DISPLAY "IN PARA 5".

The results of executing this code would be the following values are displayed on the screen:

IN PROG

IN PARA-3

IN PARA-1

IN PARA-2

IN PARA-3

IN PARA-4

IN PARA-5

If we change the second example of sections to include a GO TO:

 PROCEDURE DIVISION.
 SECT-1 SECTION.
 PROG.
 DISPLAY "IN PROG"
 GO TO SECT-2.
 PARA-1.
 DISPLAY "IN PARA 1".
 PARA-2.
 DISPLAY "IN PARA 2".
 SECT-2 SECTION.
 PARA-3.
 DISPLAY "IN PARA 3".
 PARA-4.
 DISPLAY "IN PARA 4".
 PARA-5.
 DISPLAY "IN PARA 5".

The results of executing this code would be the following values are displayed on the screen:

IN PROG

IN PARA-3

IN PARA-4

IN PARA-5

If we change the second example of sections to include a PERFORM:

 PROCEDURE DIVISION.
 SECT-1 SECTION.
 PROG.
 DISPLAY "IN PROG"
 PERFORM TO SECT-2.
 PARA-1.
 DISPLAY "IN PARA 1".
 PARA-2.
 DISPLAY "IN PARA 2".
 SECT-2 SECTION.
 PARA-3.
 DISPLAY "IN PARA 3".

Copyright © Micro Focus 2015-2016. All rights reserved.

05 Basic Verbs

61

 PARA-4.
 DISPLAY "IN PARA 4".
 PARA-5.
 DISPLAY "IN PARA 5".

The results of executing this code would be the following values are displayed on the screen:

IN PROG

IN PARA-3

IN PARA-4

IN PARA-5

IN PARA-1

IN PARA-2

IN PARA-3

IN PARA-4

IN PARA-5

Mixing GO TO and PERFORM
Avoid if at all possible!!

It is very easy to get into a complete mess if you mix and match Performs and Go Tos. Please avoid if

at all possible.

The example shown below (and in workspace 05_04_Mix_GOTO_Perform) has a mixture which

causes a number of problems.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 PROCEDURE DIVISION.
 PROG.
 PERFORM PARA-1 THRU PARA-3
 STOP "Press <CR> to terminate"
 STOP RUN.
 PARA-1.
 DISPLAY "IN PARA 1"
 GO TO PARA-4.
 PARA-2.
 DISPLAY "IN PARA 2".
 PARA-3.
 DISPLAY "IN PARA 3".
 PARA-4.
 DISPLAY "IN PARA 4".
 PARA-5.
 DISPLAY "IN PARA 5"
 GO TO PARA-3.

Even in this small piece of code, it has become difficult to follow the logic.

Although the PERFORM results in control jumping to PARA-1, the GO TO then takes us to PARA-4,

and then we drop through to PARA-5.

In fact, everything works out all right, as the GO TO PARA-3 takes us back to the last paragraph to be

PERFORMed, but this was pure luck, overcoming terrible coding.

Control can therefore return to the STOP RUN.

Copyright © Micro Focus 2015-2016. All rights reserved.

05 Basic Verbs

62

If that GO TO pointed to, say a PARA-8 or there was no GO TO, the results would be unpredictable,

to say the least.

Incidentally, this program produces the following output.

Module Summary
Now you have completed this module you are be able to:

 Explain the DISPLAY, ACCEPT, STOP, MOVE, GO TO and PERFORM verbs

 Describe how the following verbs direct program logic

o PERFORM ...

o PERFORM … UNTIL

o GO TO

Exercises
Make sure you execute the example solutions in debug mode (use F5 to step through the execution

of the code) to understand what is happening in the 4 programs inside these workspaces.

 05_01_Basic_Verbs

 05_02_Simple_Performs

 05_03_Simple_Performs

 05_04_Mix_GOTO_Perform

Quick Quiz
1. Which of these statements is always true?

a. You can move any data type to any data type

b. You can move character data of any size to character data of any size

c. You can move character data of any size to numeric data of any size

d. You can move numeric data of any size to numeric data of any size

e. You can move numeric data of any size to character data of any size

2. True or false?

a. It is compulsory to use END-IF to terminate an IF statement

b. It is compulsory to use a period to terminate an IF statement

c. It is compulsory to terminate an IF statement

3. True or False?

a. The DISPLAY verb reads information from the screen

b. The ACCEPT verb reads information from the screen

4. If the data items WS-COUNTER contains 14 and STORE-COUNTER contains 25, when you

execute the statement:

Copyright © Micro Focus 2015-2016. All rights reserved.

05 Basic Verbs

63

 MOVE WS-COUNTER TO STORE-COUNTER

the values of the two data items become?

a. WS-COUNTER 25, STORE-COUNTER 14

b. WS-COUNTER 25, STORE-COUNTER 25

c. WS-COUNTER 14, STORE-COUNTER 14

d. WS-COUNTER 0, STORE-COUNTER 14

e. WS-COUNTER 14, STORE-COUNTER 0

Copyright © Micro Focus 2015-2016. All rights reserved.

06 Best Practice

63

06 Best Practice

Introduction
Over the life of a typical COBOL application, many different people might make fixes and

improvements at different times.

Often this maintenance work may take many times more than the initial effort needed to create the

application in the first place.

Implementing best practices when creating new programs speeds up the process of getting a stable,

high-quality application; yet also yields huge benefits during the maintenance phase.

We will look at ways in which a COBOL program can be written to support this long term objective of

ease of maintenance.

Module Objectives
Upon successful completion of this module, you will be able to:

 Write meaningful comments when writing code.

 Design a typical COBOL file-handling program.

 Design well-structured programs.

Designing a COBOL Program
Does a COBOL program need to be designed?

 Of course it does, but it is surprising how many programmers simply embark upon coding

without thought to overall design.

Could the code be written immediately with no thought being given to program structure?

 Yes it can, but what about long term issues?

It is always possible to write a program in this way, but in all but the simplest programs, it is rarely

sensible.

 Most programs need to make decisions at some point and these need to be taken care of

sensibly.

 Many programs will contain procedural logic, meaning, certain things must take place before

other actions can be undertaken.

 Programs may have to execute a loop a particular number of times or until some condition is

true, as we saw in the discussion of the PERFORM...IF or PERFORM...UNTIL verb.

If a program has to do any of these things, then bad design or not designing at all, will introduce

logic errors. Logic errors cause the code to behave differently than the programmer expects.

Copyright © Micro Focus 2015-2016. All rights reserved.

06 Best Practice

64

The COBOL compiler cannot find such logic errors, and they may remain undetected until the

program goes live, surfacing in the future. A well-designed program very much reduces the number

of logic errors. Spending time on the design avoids many problems later.

Usually the later an error is found, the more expensive it is to fix.

COBOL programs tend to be very long-lived, perhaps for twenty or thirty years. Over that time they

may undergo many revisions, from the addition of minor features to almost a total rewrite.

A well-designed program from the start makes modifications considerably easier. If the

modifications are in turn well designed, then the task is simplified for the next maintenance

programmer, and so on.

Structured design over monolithic design gives us many benefits:

There are many methods employed for program design.

Two examples are:

 Monolithic programming

 Structured (Hierarchical) programming

Monolithic programming

 Entails the program logically starting at the beginning and flowing through to the end as

though reading a novel.

Structured programming involves

 The analysis of the overall objective

 The division of the objective into functional sections

 The definition of each functional section

 The arrangement of the functions into logical steps

Copyright © Micro Focus 2015-2016. All rights reserved.

06 Best Practice

65

 Writing the designed steps

Object Oriented Design

We will not see this until later in the course, but Object design, by its very nature, encourages the use of good

design techniques.

Design tools

The program designer has various tools to aid in the definition of the application solution

These include:

 Structure Diagrams

 Truth tables

Structure Diagrams aid the programmer in

 Isolating particular functions

 Simplifying the writing of the code

 Simplifying the test procedure

Truth Tables

 Highlight decision options prior to coding

 Simplify the data routes through the program

 Identify potential logic error traps

 Isolate the data item test options

Structure Diagrams

We will briefly indicate the use of structure diagrams in our program design.

A logic block contains either the overall structure, or parts of the structure.

In our example we will use a goods train to view the structures possible.

A top-level block

 will have a meaningful name

 it will have further functional blocks beneath it

 two or more blocks at the same level are a sequence

Copyright © Micro Focus 2015-2016. All rights reserved.

06 Best Practice

66

The train is now a sequence of blocks

 A locomotive

 A ‘bit in the middle’

 A Guard Van

This can now be further refined as iterations and selections:

Example

As a more meaningful example you are asked to design a program that sequentially reads a file of

records and then operates using the following rules:

 The input file can contain any number of records

 There are two types of input records, type A and type B

 Type A record, write an output record based on this record

 Type B record, increment a counter

 Display the total of type B records at the end of the program

Once the design phase is complete the coding can begin

If the structured design is adhered to then

 Each of the structure blocks will be either a Paragraph or a Section

Copyright © Micro Focus 2015-2016. All rights reserved.

06 Best Practice

67

 Each Section/Paragraph will be stand-alone

 Each Section/Paragraph can be tested separately

Each Section/Paragraph could contain a descriptive comment that instructs the next developer

about the section function.

During the design of the program you took into consideration various factors

The IF statement only tests for record type A or B

 What would happen if another record type was introduced?

 How could we get around this problem?

Read a record results

 You get a data record

 What if there was no record, or, you had reached the end of file

 How would you inform the program of this event?

Handling the Counter

 Incrementing was requested for the type B record

 Initialization of the counter may be required

Copyright © Micro Focus 2015-2016. All rights reserved.

06 Best Practice

68

Truth tables

We will see how we can use truth tables within COBOL later, using the EVALUATE statement.

Now back to our COBOL program to read the data file and produce the results we require!

Input and Output files
Considerations when handling files in our examples

 The input file can contain any number of records, including zero

 There are two types of input records, type A and type B. We will assume that there is a PIC X

field on the record containing the vale “A” or the value “B”.

Copyright © Micro Focus 2015-2016. All rights reserved.

06 Best Practice

69

 If we find a type “A” record, create an output record based on that record, and write it out.

(No details of record yet)

 If we find a type “B” record, just increment a type B counter, which will be displayed at the

end of the program

The structure of the program to handle this processing is:

Copyright © Micro Focus 2015-2016. All rights reserved.

06 Best Practice

70

So the following is a sample program to implement this logic:

In the example, there are a couple of things to note.

Firstly, the IF statement this time has an ELSE. The actions here will be carried out if the condition is

false (in other words, any record which isn’t a type A will automatically be treated as a type B). This

may well be acceptable. Alternatively you may need to check for A, B, and ‘anything else’.

Secondly, on this occasion the IF statement has been terminated with an END-IF. Normally this

means that no period (full stop) is needed at the end of the IF. But, because this is the last

statement in the paragraph, the period is necessary.

It is beyond the scope of this class to fully cover structured program design (as it will also be later in

the course when we look at Object Oriented COBOL). The main objectives here are to show how

Copyright © Micro Focus 2015-2016. All rights reserved.

06 Best Practice

71

COBOL provides building blocks supporting structured design (and later to support Object

Orientation).

Module Summary
Now you have completed this module, you will be able to:

 Write meaningful comments when writing code

 Design a typical COBOL file-handling program

 Design well-structured programs

Exercise 1
In relation to the program shown above, look at the following:

 PROG – Perform INIT. Perform BOD. Perform END.

 INIT – Includes three actions:

Open the files [1]. (We will take it for granted at the moment that we have to do this. It’s the way of

connecting the program to the files it needs.)

Clear counters [8]. (We could do this with VALUE clauses, but it’s a useful reminder.)

Read the input file [4] looking for a record. To anticipate, in COBOL you can check whether a READ

failed because of the end-of-file indication. Then, set a flag automatically (either a PIC 9 set to 1 when

end-of-file or PIC X set to ‘Y’ — or anything else you want). It’s worth remembering that this flag will

need to be cleared as one of the counters. Again, we can do this explicitly, or we can use a VALUE

clause.

 BOD – Perform PROCESS-REC until the flag is true. If the file was empty, then the flag is already true

and the PERFORM won’t happen at all.

 END – Display the type B counter [9], which must be getting updated elsewhere, close the files [2]

(again, let’s assume that this is a good thing to do), and stop the run [3].

 PROCESS-REC – If the record we have at the moment is a Type A, Perform Type-A; else Perform Type-

B.

 TYPE-A – Set up the output record (presumably by copying values from the input record) [5], and

write an output record [6]. Try and read another record [4]. This read will either succeed (in which

case we go round the loop again) or fail because of the end-of-file (in which case we have finished the

loop).

 TYPE-B – Add 1 to the type B counter [7], and try and read another record [4], as above. Again the

same logic applies. If we find a record, we go round again; if not, we leave the PERFORM.

Exercise 2

Create a structure diagram for each example below.

1. A dinner party with a number of guests, each of whom is either male or female.

2. A dinner party, where only couples are invited.

3. The meal at the dinner party. The starter is quail’s egg salad, langoustines or vegetable

terrine. Next, include a main course of steak (well-done, medium rare, or rare) with

Copyright © Micro Focus 2015-2016. All rights reserved.

06 Best Practice

72

vegetables (and either French fries or salad) or spinach and aubergine bake. Guests may

drink one or more glasses of wine with this portion of the meal. Peaches in Armagnac or

lime and durian ice cream make the final course. (Both the first and third courses are

optional).

Finally, everyone can have one or more cups of coffee (black or with cream) or a liqueur.

4. The train (now passenger, not goods) with first- and standard-class carriages, a buffet car,

and an extra locomotive at the rear.

5. A holiday that consists of a flight at the beginning and a return flight at the end. Between

those two events are days where the holidaymaker goes to the beach, takes a coach trip, or

goes shopping. Allow for the luggage missing on the flight out.

6. An encyclopedia that consists of many volumes, each containing many articles. Each volume

has a table of contents and an index. A supplementary volume also has a table of contents

and index of all the volumes together with an atlas.

7. A person’s life, defined in different ways. Firstly, draw a structure showing the person going

to school (more than one, possibly) and college, getting a job, and having a working life,

followed by retirement. After you have done this, produce a totally different structure,

showing the person getting married, having children, and grandchildren.

8. Draw a structure of what you do in a typical week, showing events such as meals, working,

watching television (or whatever you do instead), hobbies and so on. You will probably have

to show workdays separately from weekends.

A COBOL program with a start, middle and end. The start and end don’t have to show any detail at

the moment, but in the middle we have to show that a number of records (possibly zero) will be

processed. Each record is of type A, B or C.

Exercise 3
Set your workspace to 06_01_Program_Design and look at the logic of the code in the program.

This program is incomplete since the full program code has not yet been “fleshed” out.

A fully “fleshed” out solution can be found in the workspace 06_02_Program_Design_full. Inside this

solution you will find code that we have not yet fully explored, but you may want to look through

this code for now. Full details of what the code is doing will be discussed later.

The best was to look at this code is probably to debug the code using F5.

The only part of file handling you need to understand at this time is that when you “READ” a

sequential file is that you read the next record on the file.

The contents of this file are:

Copyright © Micro Focus 2015-2016. All rights reserved.

06 Best Practice

73

The result of running this program will be:

Quick Quiz

1. When designing a program the first task we undertake is:

a. Make a list of actions the program must perform

b. Start writing the code

c. Think about the comments you can use

d. Design the structure of the program

2. If a file is input to a program it must contain at least 1 record?

a. TRUE

b. FALSE

3. A file which is output from a program must already exist?

Copyright © Micro Focus 2015-2016. All rights reserved.

06 Best Practice

74

a. TRUE

b. FALSE

Copyright © Micro Focus 2015-2016. All rights reserved.

07 Handling Sequential Data Files

75

07 Handling Sequential Data Files

Introduction
At the end of the previous module you had a glimpse of how sequential files are handled in COBOL.

The ability to easily and flexibly handle data files is central to commercial computing needs and, not

coincidentally, to COBOL.

The language regards files as either sequential or random access. Here, we look at the constructs

and techniques for handling sequential files effectively.

Module Objectives
Upon successful completion of this module, you will:

 Use the Environment Division and Data Division entries in a COBOL program that uses input

or output sequential files.

 Use the correct format of READ, WRITE, OPEN and CLOSE statements in the Procedure

division for sequential files, including testing for an end-of-file condition.

 Describe how COBOL deals with multiple record types on the same file.

 Be able to design and code a typical COBOL program that handles sequential files.

Files and Records
In the earlier modules, we have written only COBOL programs that do not use files (although we

briefly glimpsed some file access).

We shall now examine the extra entries necessary to use sequential files in a COBOL program.

When a program uses sequential files, the program must include the following entries and

statements.

• Environment Division entries – to identify a file to your program.

• Data Division entries – to specify the file’s layout for your program so that your program can

read or write to it accurately.

• Procedure Division statements – to act on the file.

What are files and records?

• A file is a group of records

• A record is a group of fields, or data items. A record must be written as a Group Level item,

which contains Elementary Level data items

• A record is also the unit of information that is read or written. (You do not read or write

fields; you read or write records).

Files that COBOL can handle include:

• Sequential.

Copyright © Micro Focus 2015-2016. All rights reserved.

07 Handling Sequential Data Files

76

• Relative

• Indexed

In addition, on a PC or Unix machine, COBOL can also handle line-sequential files (which are

workstation text files).

This module only deals with Sequential files

 A sequential file is a file containing records that must be retrieved in the order first to last in

sequence.

We will take the program from the previous module and examine it in more detail.

We shall also examine the way that COBOL deals with multiple record types, within an input or

output file.

Program statements required

What program entries and statements are required?

Environment Division entries

This notifies the program which files are to be accessed. This entry is used to map the

internal program name of the file to the external file name on disk.

Data Division entries

This defines the data layout for each of the records in the files.

To enable accurate reading, writing and formatting of file data.

Procedure Division

This contains the statements for the actions to be performed on the files and its records.

Connecting Files

Before opening a file in your program, you must first establish its identity in your program and

specify its layout so your program can access it appropriately. This is done in two steps and two

places within a program.

Identify a file within the ENVIRONMENT DIVISION using a SELECT statement.

Specify a file’s layout within the DATA DIVISION.

Identifying Files

The ENVIRONMENT DIVISION has not been used up until now. Now, we must identify the file to our

program using a SELECT statement.

The SELECT statement must be included in the INPUT-OUTPUT SECTION of the ENVIRONMENT

DIVISION.

The INPUT-OUTPUT SECTION contains an entry for each file.

The following code shows an entry for two files:

Copyright © Micro Focus 2015-2016. All rights reserved.

07 Handling Sequential Data Files

77

 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT INFILE ASSIGN INNAME
 ORGANIZATION SEQUENTIAL.
 SELECT OUTFILE ASSIGN OUTNAME
 ORGANIZATION SEQUENTIAL.

This is the minimum entry for a file. However the phrase ORGANIZATION SEQUENTIAL can be omitted,

since this is the default file organization. This would give:

 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT INFILE ASSIGN INNAME.
 SELECT OUTFILE ASSIGN OUTNAME.
The file is called INNAME in the outside world; however, your COBOL program knows it as INFILE

within the program. The mapping between the internal file names and the external file names can

be seen inside the project properties as shown below. (Switch to the workspace

06_02_Program_Design_Full to see this).

This SELECT statement assigns the INNAME file with an internal file on your system.

While the Division and Section entries begin in Area A, the file entries should start in Area B.

An alternative method for assigning filenames, directly in the program, is shown below:

 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT INFILE ASSIGN ‘C:\COBOLClass_Eclipse\DataFiles\TEMPIN.DAT’.
 SELECT OUTFILE ASSIGN ‘C:\COBOLClass_Eclipse\DataFiles\TEMPOUT.DAT’.

Each file needs its own SELECT statement.

Each of them should be terminated with a period.

Any input file must exist, while an output file might not exist. If it does, by default the program

overwrites it and loses existing records.

Although we have now told the program that we are going to access one or more files, the program

needs detail of the data on the records within the file(s).

Copyright © Micro Focus 2015-2016. All rights reserved.

07 Handling Sequential Data Files

78

This information appears in the DATA DIVISION, inside the FILE SECTION.

Defining file layouts

We need to define each file to the program.

To do so we must provide entries in the FILE SECTION.

The definition includes the file layout, its attributes and the record formats.

The File Description FD entry

For every file name named in the SELECT statement within the INPUT-OUTPUT SECTION of the

ENVIRONMENT DIVISION, you must include an FD (File Description) entry.

The FD statement marks the beginning of the data description for that file.

The name following the FD must match that after the appropriate SELECT statement in the INPUT-

OUTPUT SECTION.

Because two SELECT statements were included for two file names in the previous code, the program

must include two FD entries.

Code your FD entries in Area A.

File Record structure

Each record begins with a Group Level Item which names the record

• Our sample shows 01 INREC and 01 OUTREC

– INREC is our input record

– OUTREC is our output record

• We only have one record layout defined for each file

• Field content

– The contents of the fields are loaded from the file.

Copyright © Micro Focus 2015-2016. All rights reserved.

07 Handling Sequential Data Files

79

– Therefore VALUE clauses cannot be used to pre-set the data items in the File

Section.

COBOL verbs for sequential file access

The COBOL verbs to access a sequential file are

• OPEN

• READ

• WRITE

• CLOSE

OPEN and CLOSE are always used before and after file access

READ and WRITE statements are program dependent.

• A file cannot be read unless it has been opened for input.

• A file cannot be written unless it has been opened for either output or extend

The OPEN verb

Before the program can access a file, it needs to be OPENed.

Input files are OPENed INPUT, and output files are normally OPENed OUTPUT.

Use the OPEN verb in the following format:

 OPEN [Type of Access] Filename.

e.g.

 OPEN INPUT INFILE
 OPEN OUTPUT OUTFILE

It is often written like this:

 OPEN INPUT INFILE
 OUTPUT OUTFILE

Two types of access include INPUT and OUTPUT; there are other types, but we need only these two

for now.

Notice again that the names used with the verbs are those associated with both the SELECT and FD

entries.

When opening for input

• The file should already exist

When opening for output

• The file would not normally exist, since the file will be created with the OPEN

OUTPUT statement, thereby deleting the existing file.

• If it does exist, it can be opened to overwrite the current data if you require.

Copyright © Micro Focus 2015-2016. All rights reserved.

07 Handling Sequential Data Files

80

• Alternatively it can be opened to append to the current data using the OPEN

EXTEND statement.

When opening to extend an output file

You may remember that we mentioned that by default COBOL clears output files if they exist.

This is what OPEN OUTPUT does. If you instead write OPEN EXTEND, a pointer is positioned at the

end of any existing records, and new records are added to the end of the file. E.g.

 OPEN EXTEND OUTFILE

Note: If you try to open a file that is already opened, you will get a run-time error.

The READ verb

The file to be READ must have been opened as input.

The READ of a sequential file reads the next record in the file (At the start of the file, it reads the first

record on file).

The statement should also inform the program what to do when there are no more records to be

read. In our sample solution 06_02_Program_Design_Full.sln the result of a successful read:

 Returns a record into the Group Item defined – RECORD-TYPE-A.

 Since RECORD-TYPE-B is just a redefinition of RECORD-TYPE-A the record is also implicitly

returned to this second definition.

 The result of an empty file or no more records to read, initiates the statements after the
“AT END” e.g.
 READ INFILE

 AT END
 MOVE 1 TO WS-END-OF-FILE
 END-READ

 If the READ succeeds, that is, if there is a record or another record, the contents of that
record will go into all of the 01 descriptions specified.

In our case, the contents go into the record description of both RECORD-TYPE-A and RECORD-TYPE-
B, as shown in our code previously. (This area is known as the record buffer.) WS-END-OF-FILE will
not be touched.
If the read fails, WS-END-OF-FILE will be set to 1. The contents of RECORD-TYPE-A and RECORD-
TYPE-B may be undefined (if there has never been a record) or those of the last record read (if there
have been previous records). Logically, we should not look at them anyway, because there has been
no new record read.

Why do we read a file name?

You will notice that the READ statement refers to the file name, not the record name. It is possible
that a file may contain records of two or more types (as is the case for us here). Because this is an
input file, we have no idea what record type is coming in next. All we can do is read the file name.

The WRITE verb

The converse of READ is WRITE.

Copyright © Micro Focus 2015-2016. All rights reserved.

07 Handling Sequential Data Files

81

While the verb READ moves data from the file to storage, WRITE moves data from storage to the

next record in the file.

To WRITE to a file, the file must have been opened as either OUTPUT or EXTEND.

The WRITE to a sequential file writes to the next record position in the file (At the start of the file, it

writes the first record on file).

Unlike READ’s target, the program writes a record name, not a file name, since we know what

record we are writing.

 MOVE SR-NAME TO OUT-NAME
 WRITE OUTREC

Why do we WRITE a record name?

Since this is output, we are creating the record. If there more than one type exists, we need to

specify which one we are writing.

Notice above that prior to a WRITE, we need to have built up the output record in its record buffer.

The CLOSE verb

All files should be CLOSE’d before program termination

It is normally the last operation performed on a file before the program is finally halted.

The file must have been opened before it can be closed.

Logically, CLOSE statements usually belong at the end of the program logic; just as OPEN statements

normally belong at the beginning.

The following code shows how we might use the CLOSE verb.

 CLOSE INFILE

 CLOSE OUTFILE

However, the following code shows how it would often be written.

 CLOSE INFILE

 OUTFILE

While files can be opened in different ways, they are all closed in the same way.

So, the format of the CLOSE statement is simpler. Closing a file releases the file back to the

operating system so that other programs can use it.

Note: If you try to close a file that is not open you will get a run-time error.

Sequential file access verbs summary

The following shows all the main sequential file verbs in summary:

Copyright © Micro Focus 2015-2016. All rights reserved.

07 Handling Sequential Data Files

82

Exercise 1
In the previous module we briefly saw the workspace 06_02_Program_Design_full.

Now switch to this workspace and study the program’s behaviour, in debug mode, using the

knowledge that you have obtained so far in this module.

How would you alter the program to add to the end of the output file, each time the program is run?

Extending the verbs
Some of the sequential file verbs you have seen so far can be extended.

The full READ verb

The READ verb can be extended to

 Have “AT END”

 And “NOT AT END”

 READ the input record directly into the Working-Storage Section

e.g.

 READ INFILE
 AT END
 MOVE 1 TO WS-EOF
 NOT AT END
 PERFORM GOT-A-RECORD
 END-READ

It can also be extended to READ a record directly into a working-storage data item

Copyright © Micro Focus 2015-2016. All rights reserved.

07 Handling Sequential Data Files

83

The full WRITE verb

This verb can also be extended to write from a working-storage data item.

Points to remember.

• When you OPEN a file for writing

– OPEN OUTPUT filename – will overwrite existing file data

– OPEN EXTEND filename – will append to existing file data

• You READ a FILE

– READ filename

• You WRITE a RECORD

– WRITE recordname

Copyright © Micro Focus 2015-2016. All rights reserved.

07 Handling Sequential Data Files

84

• You cannot initialize data items in the File Section

– the data from the input/output operation is moved into this area

File records of different lengths
COBOL has no problem handling files with multiple record types. In our example so far we had a file

with 2 record types. Both of these record types were the same length (74 bytes each). However

there is no problem to COBOL in having records of different lengths.

If you do have different record lengths then there are some obvious things to be aware of:

 If you use READ INTO, make sure your working-storage item is big enough to handle the

largest record.

 If you use WRITE FROM, make sure the working-storage item complies with the record

length you require.

You can think of a READ INTO and WRITE FROM as 2 statements. In that way you will avoid any size

mistakes.

So for a READ

 READ INFILE INTO WS-INREC

is exactly the same as:

 READ INFILE
 MOVE INREC TO WS-INREC

For a WRITE

 WRITE OUTREC FROM WS-OUTREC

is exactly the same as:

 MOVE WS-OUTREC TO OUTREC
 WRITE OUTREC

Module Summary
Now you have completed this module, you can:

 Use the Environment Division and Data Division entries in a COBOL program that uses input

or output sequential files.

 Use the correct format of READ, WRITE, OPEN and CLOSE statements in the Procedure

division for sequential files, including testing for an end-of-file condition.

 Describe how COBOL deals with multiple record types on the same file.

 Be able to design and code a typical COBOL program that handles sequential files.

Exercise 2
There is a workspace 07_01_multi_records which you should switch to. The program in here

illustrates many of the features we have defined above.

Copyright © Micro Focus 2015-2016. All rights reserved.

07 Handling Sequential Data Files

85

The purpose of this program is to read an employee file, create two output files and display a

counter.

One file will contain the ’normal’ employee records; the other file will contain records for each

employee leaving the company and a control record at the end of the file.

The program will also count and display the number of records written to both output files.

Study this program to ensure that you understand all the processing.

Exercise 3
There is another workspace 07_02_multi_records2 which is similar to the last. You may find it useful

to step through the code in this program to re-emphasise the way that sequential files are

processed.

You will notice that there are a few comments on the program. You will see we have used a level 88

data name (This is a condition name). Also look at the SET statement to set the condition to true.

We will discuss these later in the class.

Quick Quiz
1. Name the five verbs used in sequential data file handling

2. How is a data file appended to, rather than overwritten?

3. How is the empty file event handled when opening a file for input?

4. You wish to retrieve data from a file, which of the following statements would you most

likely use?

a. READ INFILE INTO OUTREC

b. READ INFILE AT END MOVE “Y” TO WS-EOF

c. READ INREC AT END MOVE “Y” TO WS-EOF

d. WRITE OUTREC FROM INREC .

5. Which of the following is true of an AT END clause after a READ?

a. It must be terminated with a period

b. It must be terminated with an AT END

c. It does not need to be terminated

d. It must be terminated with something

6. AT END can be used with both a READ and WRITE?

a. TRUE

b. FALSE

7. Any sequential input file must have all its records the same length?

a. TRUE

b. FALSE

8. Any sequential output file must have all its records the same length?

a. TRUE

b. FALSE

9. Files are selected in:

Copyright © Micro Focus 2015-2016. All rights reserved.

07 Handling Sequential Data Files

86

a. IDENTIFICATION DIVISION

b. ENVIRONMENT DIVISION

c. DATA DIVISION

d. PROCEDURE DIVISION

10. When you write to a file, you write using?

a. The file name

b. The record name

Copyright © Micro Focus 2015-2016. All rights reserved.

08 Decision Logic

87

08 Decision Logic

Introduction
Implementing the required decision logic in a program effectively means higher quality programs,

shorter testing time, and better maintenance productivity.

Here, we understand the different conditional constructs available in COBOL and understand when

and how to use them.

Most programming requires making a choice

 If one condition occurs, the program should do this task.

 If a different condition occurs, the program should do a different task.

In COBOL the flow of a program is controlled almost entirely by

 IF-ELSE or EVALUATE statements

 the PERFORM verb

 possibly the GO TO verb

Module Objectives
Upon successful completion of this module, you will be able to:

 Use the verb EVALUATE and the IF condition as well as the Level 88 construct in testing

conditions

 Describe the different types of conditions

 Explain the advantages and disadvantages of different ways of condition testing

 Spot and fix infinite loops

The IF statement
The following is a simple IF Statement

IF [condition] (THEN)

 [do one or more statements]

(ELSE)

 [do one or more statements])

(END-IF)

The entries in round brackets () are optional.

This code indicates that if a condition is true, then perform an action.

Otherwise (if the condition is false), do a different action.

Lastly, END-IF marks the end of the conditional statement. Prior to 1985 a period denotes the end of

the IF).

Copyright © Micro Focus 2015-2016. All rights reserved.

08 Decision Logic

88

Condition phrases

In the above sample IF statement, the “condition” phrase can take a number of forms:

– Relational conditions

– Class conditions

– Sign conditions

– Condition-name conditions (Level 88s)

– Compound conditions

– Nested conditions

Relational conditions

A relational condition compares two or more operands, for example:

 IF CUSTOMER-AGE < 21
 DISPLAY 'CUSTOMER TOO YOUNG'
 END-IF

You can also use the NOT to negate the condition, for example:

 IF PARENTS-CONSENT NOT = 'YES'
 DISPLAY 'NO CONSENT GIVEN'
 END-IF

In some cases we might want to determine whether a data is not equal to something.

Prior to 1985 no equivalent existed for <>, which means not equal; however, we could express it in

one of the following ways.

 IF WS-TOTAL NOT = 6
 IF WS-TOTAL UNEQUAL 6
 IF WS-TOTAL NOT EQUAL TO 6
 IF WS-TOTAL <> 6

Relational conditions are clear when comparing numeric items. However relational comparisons are

also completely valid for comparing alphanumeric items.

Copyright © Micro Focus 2015-2016. All rights reserved.

08 Decision Logic

89

For the first four bytes “FRED” and “FREDA” are equal.

At the fifth byte, “A” is compared with space, since “FRED” does not contain any more real

characters that can be checked. (This still happens if the string holding “FRED” has no bytes that are

unoccupied.) Since hex ‘20’ represents space in the ASCII character set, and hex ‘41’ represents “A”,

“FRED” is less than “FREDA”.

Note: In modern COBOL running on a PC or UNIX platform, the character code set is normally ASCII.

In mainframe platforms the character code set is normally EBCDIC. The character sequence in ASCII

and EBCDIC are different. So that a comparison which works one way in EBCDIC, may work the

opposite way in ASCII. This only becomes relevant if you are comparing alphanumeric items which

can contain mixed upper and lower case, or items which contain a mixture of alphabetic and numeric

data.

Class Conditions

A class condition allows the programmer to test for a specific type of data, for example, ALPHABETIC

or NUMERIC

 IF EMPLOYEE-NAME IS ALPHABETIC
 PERFORM VALID-PROCESSING
 ELSE
 PERFORM ERROR-ROUTINE
 END-IF

or

 IF EMPLOYEE-AGE IS NUMERIC
 PERFORM VALID-PROCESSING
 ELSE
 PERFORM ERROR-ROUTINE
 END-IF

Sign Conditions

Sign conditions allow the programmer to test numeric fields for POSITIVE, NEGATIVE, or ZERO. For

example:

 01 WS-CUSTOMER-BALANCE PIC S9(5)V99.

 IF WS-CUSTOMER-BALANCE IS NEGATIVE
 PERFORM REFUSE-LOAN
 END-IF

 IF WS-CUSTOMER-BALANCE IS ZERO
 PERFORM REFUSE-LOAN
 END-IF

 IF WS-CUSTOMER-BALANCE IS POSITIVE
 PERFORM ACCEPT-LOAN
 END-IF

Condition Names

To make IF condition tests easier to write (and read), use Level 88, a special level number in COBOL

programs

Copyright © Micro Focus 2015-2016. All rights reserved.

08 Decision Logic

90

A level 88 is always associated with another variable. It may seem on first glance as if we are setting

a VALUE clause; however, we are not.

Instead of moving a value to a field, we are declaring one or more values against which to test.

This makes the IF statement shorter and possibly more meaningful.

See the example:

 01 INREC.
 03 INREC-AGE PIC 99.
 88 VALID-AGE VALUE 13 THRU 99.
 88 TEEN VALUE 13 THRU 19.
 88 YOUNG-ADULT VALUE 20 THRU 29.
 88 STILL-YOUNGISH VALUE 30 THRU 39.
 88 PAST-IT VALUE 40 THRU 99.

 IF NOT VALID-AGE
 DISPLAY 'TOO YOUNG TO JOIN FACEBOOK!'
 END-IF
 IF PAST-IT
 PERFORM MAKE-TEXT-BIGGER-FOR-OLD-EYES
 END-IF

 IF TEEN

 PERFORM TREAT-WITH-CARE

 END-IF

 IF YOUNG-ADULT

 PERFORM NOT-TO-BAD

 END-IF

 IF STILL-YOUNGISH

 PERFORM BUY-A-DRINK

 END-IF

The 88 can be extended to contain multiple values. For example

 01 WS-GENDER PIC X.
 88 FEMALE value "F" "f".
 88 MALE value "M" "m".

 01 WS-CREDIT-LIMIT PIC 9999.
 88 LOW-BALANCE value 0 thru 500.
 88 HIGH-BALANCE value 8000 thru 9999.

 01 INREC.
 03 INREC-TYPE PIC X.
 88 VALID-TYPES VALUE "A" THRU "E" "G" "Z".
 88 CEO VALUE "A".
 88 VICE-PRESIDENT VALUE "B".
 88 SENIOR-MANAGER VALUE "C".
 88 MANAGER VALUE "D".
 88 TEAM-MEMBER VALUE "E".
 88 JANITOR VALUE "G".
 88 TRAINER VALUE "Z".

Using a condition name to signal end of file:

One very common use of the 88 levels is on the flag used to signify end of file:

Copyright © Micro Focus 2015-2016. All rights reserved.

08 Decision Logic

91

 01 WS-END-OF-FILE PIC 9 VALUE 0.
 88 NO-MORE-RECORDS VALUE 1.

 PERFORM PROCESS-REC UNTIL NO-MORE-RECORDS
 [other code]
 READ INFILE
 AT END
 SET NO-MORE-RECORDS TO TRUE
 END-READ

Using LEVEL 88’s encourages more English-like statements in the PROCEDURE DIVISION.

The code:

 PERFORM PROCESS-REC UNTIL NO-MORE-RECORDS

is clearer than:

 PERFORM PROCESS-REC UNTIL WS-END-OF-FILE IS NOT EQUAL TO ZERO

Compound Conditions

To test more than one condition at once, use compound conditions in your IF statement

 IF WS-TOT-3 = 5 OR WS-SUM-X > 22

 IF WS-TOTAL > 23 AND WS-SUM = 200 OR WS-FINAL = 444

When using AND and OR in the same test always use brackets for clarity, so that the condition in

brackets is evaluated before anything else. E.g. the following 3 IFs all behave differently. So make

sure you use brackets for clarity:

 IF WS-TOTAL > 23 AND WS-SUM = 200 OR WS-FINAL = 444
 IF (WS-TOTAL > 23 AND WS-SUM = 200) OR (WS-FINAL = 444)
 IF (WS-TOTAL > 23) AND (WS-SUM = 200 OR WS-FINAL = 444)

Nested Conditions

It is possible to nest IF statements as you can see in this example:

 IF INREC-JOB-TITLE = 'MANAGER'
 IF INREC-SALARY > 50000
 IF INREC-START-DATE < 20000101
 [actions1]
 ELSE
 [actions2]
 END-IF
 ELSE
 [actions3]
 END-IF
 ELSE
 [actions4]
 END-IF

Such statements, even when indented as shown, can be difficult to understand, and used to be

avoided before END-IF became available after 1985.

Copyright © Micro Focus 2015-2016. All rights reserved.

08 Decision Logic

92

The NEXT SENTENCE clause

The next sentence clause is used to exit an IF statement. E.g.

 IF DATA-NAME = 'FRED'
 NEXT SENTENCE
 ELSE
 ADD 1000 TO WS-NUMBER
 END-IF

The EVALUATE statement
The EVALUATE verb has a different syntax to that of IF

Conditions that would be clumsy or complex as an IF statement can often be better expressed with

EVALUATE.

EVALUATE exists in three formats:

 Simple EVALUATE statement

 EVALUATE condition statement

 Compound EVALUATE statement

Simple EVALUATE

This simple evaluate tests the values in a data item and behaves as appropriate.

 EVALUATE INREC-TYPE
 WHEN 'A' THRU 'D'
 PERFORM MANAGER-STUFF
 WHEN 'E'
 PERFORM OTHER-CODE
 WHEN 'G'
 PERFORM JANITOR-CODE
 WHEN 'Z'
 PERFORM TRAINER-FUNCTIONS
 WHEN OTHER
 PERFORM INVALID-RECORD
 END-EVALUATE

The WHEN OTHER clause is very useful in an EVALUATE statement, as it is a “catch-all” for when

none of the conditions specified are met.

This often indicates invalid data or, at the very least, something the programmer did not expect to

happen.

In the above example, on the WHEN 'A' THRU 'D', if you just want this to be true for just 'A' and

'C' then you can write:

 EVALUATE INREC-TYPE
 WHEN 'A'
 WHEN 'C’
 PERFORM MANAGER-STUFF
 WHEN 'E'
 PERFORM OTHER-CODE
 WHEN 'G'
 PERFORM JANITOR-CODE
 WHEN 'Z'
 PERFORM TRAINER-FUNCTIONS

Copyright © Micro Focus 2015-2016. All rights reserved.

08 Decision Logic

93

 WHEN OTHER
 PERFORM INVALID-RECORD
 END-EVALUATE

Condition EVALUATE

The following code tests three conditions using the Evaluate True version:

 end of file using a level 88 condition name,

 when the counter equals 99, or

 when another condition is true (the catch all).

 EVALUATE TRUE
 WHEN NO-MORE-RECORDS
 PERFORM UNEXPECTED-EOF
 WHEN WS-COUNTER = 99
 DISPLAY 'Too many records'
 STOP RUN
 WHEN OTHER
 PERFORM NORMAL-ACTIONS
 END-EVALUATE.

When one of these conditions is true, then the EVALUATE is true and the condition-specific action is

taken.

Once one condition is tested and found true, then the Evaluate terminates (the other tests are

ignored). So in the above example, if both NO-MORE-RECORDS is true and WS-COUNTER = 99 then only

the first condition NO-MORE-RECORDS would be acted upon.

The EVALUATE statement can be much simpler to code and much easier to read than a series of

nested IF statements.

Compound EVALUATE

To test multiple subjects in an EVALUATE statement, use an ALSO clause instead of AND as shown

below:

 EVALUATE IN-JOB-TYPE ALSO TRUE
 WHEN 'MANAGER' ALSO IN-SALARY > 250000
 PERFORM REWARD-TOP-EXECUTIVES
 WHEN 'TEAM LEADER' ALSO IN-SALARY > 80000
 PERFORM BENEFIT-MIDDLE-PEOPLE
 WHEN 'EMPLOYEE' ALSO IN-SALARY < 50000
 PERFORM EMPLOYEE-BENEFITS
 END-EVALUATE

This Compound Evaluate is used to implement Truth Tables.

The CONTINUE clause

To indicate that a program should do nothing when a particular condition is true, use the CONTINUE

clause, which tells the program to exit the evaluate and execute the next statement after the END-

EVALUATE. It is a little like the NEXT SENTENCE clause in an IF statement.

Copyright © Micro Focus 2015-2016. All rights reserved.

08 Decision Logic

94

 01 CUSTOMER-TITLE PIC X(4).
 88 MALE-TITLE VALUE "MR".
 88 FEMALE-TITLE VALUE "MRS" "MISS" "MS".

 EVALUATE TRUE
 WHEN MALE-TITLE
 CONTINUE
 WHEN FEMALE-TITLE
 PERFORM FEMALE-CUST
 WHEN OTHER
 PERFORM INVALID-TITLE
 END-EVALUATE

Infinite loops

As in any other programming language, you can produce loops that never terminate.

Example 1:

 01 MY-COUNTER PIC 99.

 MAIN-PROCESS.

 PERFORM PROCESS-DATA

 VARYING MY-COUNTER FROM 1 BY 1 UNTIL MY-COUNTER > 100

In this example MY-COUNTER can never reach 100 since the data item is only 2 bytes. When it

reaches 99 and then is increment by 1, the data item will revert to 0.

The solution would be to make MY-DATA a PIC 999.

Example 2:

01 MY-DATA PIC 9(6)V99.

MAIN-PROCESS.

 MOVE 0 TO MY-DATA

 PERFORM UNTIL MY-DATA = 100

 ADD 0.37 TO MY-DATA

 END-PERFORM

MY-DATA will never become equal to 100.

One solution might be to change the test to: PERFORM UNTIL MY-DATA > 100

Example 3:

This next example could cause an infinite loop on some compilers. On the Micro Focus compiler it

does not cause an infinite loop, but does cause the program to crash if you try to read a record after

the end of file has been reached.

MAIN-PROCESS.

 READ MY-FILE

Copyright © Micro Focus 2015-2016. All rights reserved.

08 Decision Logic

95

 PERFORM PROCESS-FILE UNTIL END-OF-FILE.

PROCESS-FILE.

 MOVE A TO B

 ADD 1 TO RECORD-COUNT

 READ MY-FILE.

The END-OF-FILE condition is never set, so the read will continue to read a null record at the

end of file forever.

The solution, in this case, would be to change the code to:

MAIN-PROCESS.

 PERFORM READ-MY-FILE

 PERFORM PROCESS-FILE UNTIL END-OF-FILE.

PROCESS-FILE.

 MOVE A TO B

 ADD 1 TO RECORD-COUNT

 PERFORM READ-MY-FILE.

READ-MY-FILE.

 READ MY-FILE

 AT END

 SET END-OF-FILE TO TRUE

 END-READ.

Module Summary
Now you have completed this module, you will be able to:

 Use the verb EVALUATE and the IF condition as well as the Level 88 construct in testing

conditions

 Describe the different types of conditions

 Explain the advantages and disadvantages of different ways of condition testing

 Spot and fix infinite loops

Exercise 1
You should use the workspace 08_01_Decision_Making1.

This solution contains 2 programs:

 DecisionMakingProgram1.cbl

 DecisionMakingProgram2.cbl

You should first examine DecisionMakingProgram1.cbl and execute it in debug mode to see how the

IFs and EVALUATEs are working.

To debug this first program, right-click on the program name and select Debug As/COBOL Program.

Copyright © Micro Focus 2015-2016. All rights reserved.

08 Decision Logic

96

When you are happy with an understanding of DecisionMakingProgram1 then you need to do the

same with DecisionMakingProgram2. This program is very similar to the previous program, but with

slight changes.

In both cases you should ask yourself the following questions:

1. How is the record type validated?

2. Do any of the 88 levels overlap? Does this create any problems?

3. If you look at the output files, can you see anything wrong with the “Special” records? If you

can, how would you fix this?

Exercise 2
You are going to write a program whose purpose program is to read the employee records and

create three output files. Each will contain records of employee’s within a range of salaries; either

low medium or high.

This program should also count and display the number of employee’s in each category.

Additionally, this program should evaluate the “TYPE” code on each record, rejecting and displaying

invalid records.

The steps to follow are:

1. Switch your workspace to C:\COBOLClass_Eclipse\Projects\08_02_Decision_Making2.

2. This workspace contains a partly completed program. Use this to create a COBOL program to

do the following:

a. Read in a file of records, and then deal with them in different ways depending on

the type of record found. The input file may have any number of records (including

0).

b. All input records contain a one-character type, a name field (20 characters), an

eight-digit start date, and an eight-digit salary field (six digits, two decimal places).

c. If the type field is set to anything other than “A”, “B”, “C”, “E”, “R” or “T”, reject the

record and display the details. Similarly, if the name field is blank, reject the record

in the same way. Keep a count of all such invalid records.

d. If the salary is less than 25,000, write the record details unchanged to an output file.

At the end of the program write a special record to that file containing the total

number of records written (excluding that one). This record could contain the

number zero.

e. Include in another output file unchanged details of all records where the salary is

between 25,000 and 64,999.99. Again, write a special record, containing the number

of this type of record written.

f. Include all unchanged details of all other salaries in a third output file. Again, write a

special record at the end of the program.

3. Save the program.

4. Compile and test the program.

Copyright © Micro Focus 2015-2016. All rights reserved.

08 Decision Logic

97

Exercise 3 – Fixing compilation errors
This exercise is not strictly a test of IF and EVALUATE, but is bringing together much of what you

have seen so far.

Switch to the workspace \COBOLClass_Eclipse\Projects\08_03_Bugs and see if you can fix the

compiler errors in this program.

There are a number of compiler errors in this program including:

Further Simple Exercises
There are a couple of other very simple solutions you can look at to extend your knowledge of

EVALUATE. These can be found by switching your workspace to:

• 08_04_Evaluate_True

• 08_05_Evaluate_positive

Exercise 4 – Fixing loop and file end problems
The project in workspace 08_06_Infinite_Loop has 3 “loop” problems, as described above. See if you

can find and subsequently fix the 3 problems.

Quick Quiz
1. The EVALUATE statement must be terminated by?

a. END-EVALUATE

b. A period

c. Either of the above

d. Neither of the above

2. Which of the following is true?

a. The NEXT SENTENCE clause is used in an IF statement

b. The CONTINUE clause can be used in an EVALUATE statement

c. Neither is true

3. In order to test a numeric field for positive or negative the field has to be a signed field?

a. TRUE

b. FALSE

4. Condition names can only apply to an elementary data item?

a. TRUE

b. FALSE

Copyright © Micro Focus 2015-2016. All rights reserved.

08 Decision Logic

98

5. When comparing two PIC X(n) fields, they must both be the same size?

a. TRUE

b. FALSE

6. If you are using nested IF statements a period terminates ALL the Ifs?

a. TRUE

b. FALSE

7. You can change the value in a condition name at run time?

a. TRUE

b. FALSE

8. The “catchall” in an evaluate statement is:

a. WHEN ANY

b. WHEN OTHER

c. WHEN NEITHER

d. There is no “catchall” statement

Copyright © Micro Focus 2015-2016. All rights reserved.

09 Data Manipulation

99

09 Data Manipulation

Introduction
Understanding the full range of the data manipulation constructs available in COBOL means more

efficient programming and maintenance.

This module examines the set of COBOL verbs available to manipulate both arithmetic and character

data.

Module Objectives
By the end of this module you will be able to:

 Explain the functionality of the INITIALIZE verb.

 Use the various arithmetic COBOL verbs, such as ADD, SUBTRACT, MULTIPLY, DIVIDE and

COMPUTE.

 Use the verbs for manipulating character data, such as INSPECT, STRING and UNSTRING.

 Explain the role of reference modification.

Manipulating Data
The COBOL verbs available for data manipulation fall into three distinct groups:

 The INITIALIZE verb, which can be used on both numeric and character data

 The arithmetic verbs ADD, SUBTRACT, MULTIPLY, DIVIDE and COMPUTE

 The string handling verbs INSPECT, STRING and UNSTRING

This module also explains how to extract a substring from a string using “reference modification”.

The INITIALIZE verb

The INITIALIZE verb, as its name implies, sets elementary or group data items to an initial value.

For example, if you write an income report and the program calculates the total income, you might

want to clear values and reset them to “0” in order to begin subsequent income reporting.

INITIALIZE can be used anywhere in the program. So, it can be executed many times during the

program.

Furthermore, it will always “intelligently” decide what constitutes a sensible initial value.

INITIALIZE sets alphanumeric data items to spaces and numeric data items to zeros, if no other value

is specified.

Example of INITIALIZE verb
 01 WS-DATA-ITEMS.
 03 WS-NAME PIC X(20).
 03 WS-SALARY PIC 9(6)V99.
 03 WS-RECORD-COUNT PIC 9(4) COMP.
 03 PIC X(40).
 03 WS-ADDRESS PIC X(80).

Copyright © Micro Focus 2015-2016. All rights reserved.

09 Data Manipulation

100

 INITIALIZE WS-DATA-ITEMS

After the INITIALIZE:

 WS-NAME and WS-ADDRESS will be set to spaces

 WS-SALARY will be set to zeros

 WS-RECORD-COUNT will be set to binary zeros

 The forty-character filler will be left untouched

This use is less common:

 INITIALIZE WS-DATA-ITEMS REPLACING
 ALPHANUMERIC DATA BY ALL "?"
 NUMERIC DATA BY ALL "6"

After the INITIALIZE:

 WS-NAME and WS-ADDRESS will contain “?” characters

 WS-SALARY will contain 6666.00 (not 6666.66)

 WS-RECORD-COUNT will contain 6666

 The forty-character filler will be left untouched

Arithmetic verbs

There are five verbs that we shall consider:

 ADD (2 formats)

 SUBTRACT (2 formats)

 MULTIPLY (2 formats)

 DIVIDE (5 formats)

 COMPUTE

Many of these verbs have alternate formats. We will look though each briefly.

Before that, here are some general points:

 You must use only numeric data in arithmetic operations

 By default, there is no rounding, only truncation. Thus 35 divided by 12 will return 2, unless

rounding is specified

 COBOL does not automatically check for the result of a calculation going out of range.

However, you can specify that this check takes place.

 Should an out-of-range event occur, with no check in place, the results of the calculation are

undefined.

ADD Format 1

Examples:

 ADD WS-WEEKLY-SALES TO WS-MONTHLY-SALES
 ADD WS-MONTHLY-SALES TO WS-YEARLY-SALES WS-CENTURY-SALES
 ADD RESULT-1 RESULT-2 10000 TO WS-TOTAL
 ADD 2000 TO EMPLOYEES-SALARY

This means that the operand or operands to the left of the “TO” are added to the field or fields to

the right of the “TO,” incrementing them.

Copyright © Micro Focus 2015-2016. All rights reserved.

09 Data Manipulation

101

The fields or literals to the left are unchanged.

The receiving field or fields (to the right of the “TO”) are formatted according to their PICTURE

clauses.

If you want to apply rounding to any of these, you add the word ROUNDED at the end of the line.

E.g.

 ADD RESULT-1 RESULT-2 10000 TO WS-TOTAL ROUNDED

Using ROUNDED, not surprisingly, rounds the answer according to the number of decimal places

specified in the receiving field.

ADD Format 2

Examples:

 ADD WS-WEEKLY-SALES TO WS-MONTHLY-SALES GIVING WS-TOTAL-SO-FAR
 ADD WS-WEEK1 WS-WEEK2 WS-WEEK3 WS-WEEK4 250 TO WS-ALL-WEEKS
 GIVING WS-TOTAL1 WS-TOTAL2
 ADD 100 200 300 400 GIVING WS-ADDITION

As above, if you want to apply rounding to any of these, you add the word ROUNDED at the end of

the line. E.g.

 ADD 10.01 202.34 305.11 498.32 GIVING WS-ADDITION ROUNDED

SUBTRACT Format 1

Examples:

 SUBTRACT 10 FROM WS-TOTAL1 WS-TOTAL2
 SUBTRACT WS-TOTAL1 WS-TOTAL2 FROM WS-SALARY

The value in the field or fields to the left of the “FROM” are added together if appropriate. That total

value is subtracted from the field or fields to the right of the “FROM.”

As above, if you want to apply rounding to any of these, you add the word ROUNDED at the end of

the line.

SUBTRACT Format 2

Examples:

 SUBTRACT 10 FROM WS-COUNT-1 GIVING WS-COUNT-2 WS-COUNT-3
 SUBTRACT TAXES-1 TAXES-2 FROM WS-GROSS-SALARY GIVING WS-NET-SALARY
 SUBTRACT 12 FROM 24 GIVING WS-NUM

Here the operand or operands to the left of the “FROM” are added together, and their combined

value is subtracted from the one operand after the “FROM.”

The result is moved to the field or fields after the GIVING.

Again, the word ROUNDED after a receiving field ensures that rounding takes place.

Note: Ensure that all fields from which you are SUBTRACTing are signed fields. If not, results that

should be negative, remain positive with potentially catastrophic results for your application.

Copyright © Micro Focus 2015-2016. All rights reserved.

09 Data Manipulation

102

MULTIPLY Format 1

Examples:

 MULTIPLY WS-INTEREST-RATE BY WS-SUM
 MULTIPLY 1.01 BY EMPLOYEE-SALARY
 MULTIPLY 1.01 BY EMPLOYEE-SALARY MANAGER-SALARY

In this format, the value of the operand (field or literal) before the “BY” is multiplied by the values in

the field or fields after the “BY,” and the result is moved to the field(s) after the BY.

NOTE: The following would be incorrect using this format.

 MULTIPLY EMPLOYEE-SALARY BY 1.01

Why not? Format 1 stores the results of the multiply in the operand after the BY. Also, 1.01 is a

literal and cannot be used to store data.

As shown in the below, you can also include multiple fields after the “BY” so that the operand before

the BY is multiplied by the fields after the “BY.”

 MULTIPLY 1.01 BY EMPLOYEE-SALARY MANAGER-SALARY

The results are stored in both EMPLOYEE-SALARY and MANAGER-SALARY.

Rounding, of course, behaves the same way as in ADD and SUBTRACT.

MULTIPLY Format 2

Examples:

 MULTIPLY WS-INTEREST-RATE BY WS-SUM GIVING WS-ANSWER
 MULTIPLY WS-TOTAL BY 4 GIVING WS-TOTAL-2.
 MULTIPLY EMPLOYEE-SALARY BY 1.01 GIVING EMPLOYEE-SALARY

In this format, only one field or literal can be before the “BY” and one after; however, the result can

be moved to one or more fields (which can include a field already used in the MULTIPLY).

The word ROUNDED can be inserted after the name of a receiving field.

Preventing an Out-of-Range Condition

As a general rule, a MULTIPLY statement is more likely than an ADD statement to result in a field not

being large enough for the calculation result.

Trap this out-of-range condition by using an ON SIZE ERROR clause, discussed later in this module.

DIVIDE

The DIVIDE statement has a total of five formats. In all cases ROUNDED can be used after any

receiving operand.

 Format 1: The simple format (DIVIDE INTO)

 Format 2: The GIVING format (DIVIDE INTO… GIVING)

 Format 3: DIVIDE … BY

 Format 4: DIVIDE INTO… GIVING, yielding a remainder

Copyright © Micro Focus 2015-2016. All rights reserved.

09 Data Manipulation

103

 Format 5: DIVIDE … BY, yielding a remainder

DIVIDE Format 1

Examples:

 DIVIDE WS-COUNT INTO WS-TOTAL
 DIVIDE WS-COUNT2 INTO WS-TOTAL2 WS-TOTAL3
 DIVIDE WS-COUNT INTO WS-TOTAL ROUNDED

In statement 1 above, this results in WS-TOTAL being divided by WS-COUNT.

There can be only one operand (data item or literal) before the INTO, but there may be many

operands after the INTO.

Each operand will have the same division carried out on it.

DIVIDE Format 2

Examples:

 DIVIDE WS-COUNT INTO WS-TOTAL GIVING WS-NUM-1
 DIVIDE WS-COUNT INTO WS-TOTAL GIVING WS-NUM-1 WS-NUM-2
 DIVIDE WS-COUNT INTO WS-TOTAL GIVING WS-NUM-1 ROUNDED

This time the result goes into the field or fields after the GIVING.

DIVIDE Format 3

This format reverses the operands used in DIVIDE...INTO.

Examples:

 DIVIDE WS-TOTAL BY WS-COUNT GIVING WS-NUM-1
 DIVIDE WS-ANNUAL BY 12 GIVING WS-MONTHLY-AVERAGE ROUNDED

This yields the same result as the Format 2 statement above. Again multiple receiving fields can exist

after the GIVING.

DIVIDE Format 4

This format uses a remainder, so the fields need to be integers with no decimal places.

Example:

 DIVIDE WS-COUNT INTO WS-TOTAL GIVING WS-NUM-1 REMAINDER WS-REM

DIVIDE Format 5

This format also uses a remainder, so the fields need to be integers with no decimal places as above.

Example:

 DIVIDE WS-TOTAL BY WS-COUNT GIVING WS-NUM-1 REMAINDER WS-REM

COMPUTE Format

COMPUTE has the receiving field(s) on the left of the statement

It uses the standard operands +, -, /, * and ** (exponentiation)

Copyright © Micro Focus 2015-2016. All rights reserved.

09 Data Manipulation

104

COMPUTE used to be a comparatively inefficient verb and was not used too much in the past. This is

no longer the case with modern compilers.

Examples:

 COMPUTE WS-TOTAL = (WS-NET-PAY + (WS-OVERTIME * WS-OT-HRS)) * (100 - WS-TAX-RATE)
 COMPUTE WS-MONTH ROUNDED = WS-YEAR / 12.
 COMPUTE STAR-LUMINOSITY ROUNDED = 10 ** (0.4 * (4.85 - WS-ABS-MAG))

Order of Evaluation

The order in which items are evaluated makes a difference to the result of the expression.

Items are evaluated in the following order:

 Items within parentheses

 Exponentiation

 Multiplication and division (same priority)

 Addition and subtraction (same priority)

 Left to right, when the operators are of equal priority

In practice, use brackets, wherever possible, to clarify order to you and anyone else who may have

to amend your code in the future.

NOTE: Specify ROUNDED after a receiving field in the normal way.

ON SIZE ERROR clause

The ON SIZE ERROR clause can be used with any arithmetic statement to trap a numeric calculation

going out of range, including division by zero. (Often used if the receiving field is not big enough to

hold the result of the calculation)

If the exception does not happen, the clause is ignored.

Example:

 COMPUTE WS-INVOICE-AMT = WS-ITEM-PRICE * WS-QUANTITY
 ON SIZE ERROR
 DISPLAY 'ERROR – TOTAL IS TOO LARGE'
 END-COMPUTE

In the above example the program will continue if the calculation is within range.

However, if the WS-INVOICE-AMT becomes larger than its PICTURE clause allows, ON SIZE ERROR

displays the error message.

Alternatively, use the NOT ON SIZE ERROR clause as well. This would be necessary if the COMPUTE

statement were within the scope of another conditional statement such as an IF statement.

The following example uses both the ON SIZE ERROR and the NOT ON SIZE ERROR clauses.

COMPUTE WS-INVOICE-AMT = WS-ITEM-PRICE * WS-QUANTITY
 ON SIZE ERROR
 PERFORM ERROR-ACTIONS

Copyright © Micro Focus 2015-2016. All rights reserved.

09 Data Manipulation

105

 NOT ON SIZE ERROR
 PERFORM SET-UP-INVOICE

END-COMPUTE

The examples shown here are using the COMPUTE statement. This clause can be used in any of the

other arithmetic operators also. Because this results in ADD, SUBTRACT, MULTIPLY and DIVIDE

becoming conditional statements, the following terminators are appropriate:

 END-ADD
 END-SUBTRACT
 END-MULTIPLY
 END-DIVIDE

Verbs used for string handling
COBOL deals not just with numbers, but also with strings of alphanumeric data. (PIC X and PIC A)

Three verbs manipulate such data:

 INSPECT

 STRING

 UNSTRING

INSPECT Statement

This statement can be used to look at a string of data and optionally to manipulate it. There are four

formats:

 Format 1 (INSPECT...TALLYING) counts occurrences of a character or characters within a field

 Format 2 (INSPECT...REPLACING) changes a character or characters

 Format 3 (INSPECT...TALLYING...REPLACING) combines the functionality of Formats 1 and 2

 Format 4 (INSPECT...CONVERTING) changes a character or characters

In the following examples, we shall use the same fields with the same initial values.

INSPECT Format 1…Tallying

Example:

01 WS-COUNTS.
 03 WS-COUNT-1 PIC 99.
 03 WS-COUNT-2 PIC 99.
 03 WS-COUNT-3 PIC 99.
01 WS-STRING PIC X(20) VALUE "AARDVARK EXTRA".

 INITIALIZE WS-COUNTS
 INSPECT WS-STRING TALLYING WS-COUNT-1 FOR LEADING 'A'
 WS-COUNT-2 FOR ALL 'R'
 WS-COUNT-3 FOR CHARACTERS

After the INSPECT statement, the values of the data items will be:

 WS-COUNT-1 2

 WS-COUNT-2 3

Copyright © Micro Focus 2015-2016. All rights reserved.

09 Data Manipulation

106

 WS-COUNT-3 14

 WS-STRING AARDVARK EXTRA

INSPECT Format 2…Replacing

Using the same data definitions as above, the INSPECT statement could be:

 INITIALIZE WS-COUNTS
 INSPECT WS-STRING REPLACING FIRST "A" BY "B"
 ALL "R" BY "S"

After the INSPECT statement, the values of the data items will be:

 WS-COUNT-1 0

 WS-COUNT-2 0

 WS-COUNT-3 0

 WS-STRING BASDVARK EXTSA

INSPECT Format 3…Tallying … Replacing

Using the same data definitions as above, the INSPECT statement could be:

 INITIALIZE WS-COUNTS
 INSPECT WS-STRING TALLYING WS-COUNT-1 FOR ALL "A"
 REPLACING LEADING "A" BY "B"
 ALL "R" BY "S"

After the INSPECT statement, the values of the data items will be:

 WS-COUNT-1 4

 WS-COUNT-2 0

 WS-COUNT-3 0

 WS-STRING BBSDVASK EXTSA

INSPECT Format 4…Converting

Using the same data definitions as above, the INSPECT statement could be:

 INITIALIZE WS-COUNTS

 INSPECT WS-STRING CONVERTING "RVX" TO "QUW"

After the INSPECT statement, the values of the data items will be:

 WS-COUNT-1 0

 WS-COUNT-2 0

 WS-COUNT-3 0

 WS-STRING AAQDUAQK EWTQA

Every “R” changes to “Q”, every “V” to “U” and every “X” to “W”.

BEFORE and AFTER clauses

It is possible to limit INSPECT (any format) to examine only part of a string by using the AFTER and/or

the BEFORE clause. For example:

 INITIALIZE WS-COUNTS

 INSPECT WS-STRING TALLYING WS-COUNT-3 FOR CHARACTERS AFTER "D" BEFORE "T"

Copyright © Micro Focus 2015-2016. All rights reserved.

09 Data Manipulation

107

After the INSPECT statement, the values of the data items will be:

 WS-COUNT-1 0

 WS-COUNT-2 0

 WS-COUNT-3 7

 WS-STRING AARDVARK EXTRA

STRING Statement

STRING can be used to concatenate character strings, removing unwanted spaces. For example:

 01 WS-FIELDS.
 03 WS-FIRST-NAME PIC X(12) VALUE 'BEOWULF'.
 03 WS-SURNAME PIC X(20) VALUE 'SHAEFFER'.
 03 WS-SALARY PIC 9(6)V99.
 01 WS-OUTPUT-NAME PIC X(30) VALUE SPACES.

 STRING WS-FIRST-NAME
 '*'
 WS-SURNAME
 DELIMITED BY SPACE
 INTO WS-OUTPUT-NAME
 INSPECT WS-OUTPUT-NAME REPLACING ALL '*' BY SPACE

The result of the STRING and INSPECT statements will place the following value into WS-OUTPUT-

NAME:

 BEOWOLF SHAEFFER

Here, “DELIMITED BY SPACE” means to process all the characters in the string until a space is

encountered.

So, WS-FIRST-NAME and WS-SURNAME are truncated to the right length.

However, we want a space between the two. We can’t specify “ “, as DELIMITED BY SPACE will

instantly remove it. Instead, we specify an asterisk or any other character that will not be found in

either part of the name.

Because “*” does not contain a space, the whole thing is moved.

String Delimit options:

DELIMITED BY {character}

DELIMITED BY SIZE

POINTER and ON OVERFLOW

STRING does not pad the target field with spaces – you may want to initialize it

POINTER can keep track of where you are in the field. So

 01 WS-POINTER PIC 9(4).
 01 WS-FIELDS.
 03 WS-FIRST-NAME PIC X(12) VALUE 'BEOWULF'.
 03 WS-SURNAME PIC X(20) VALUE 'SHAEFFER'.
 03 WS-SALARY PIC 9(6)V99.

Copyright © Micro Focus 2015-2016. All rights reserved.

09 Data Manipulation

108

 01 WS-OUTPUT-NAME PIC X(30) VALUE SPACES.

 INITIALIZE WS-OUTPUT-NAME
 MOVE 1 TO WS-POINTER
 STRING WS-FIRST-NAME
 "*"
 WS-SURNAME
 DELIMITED BY SPACE INTO WS-OUTPUT-NAME
 POINTER WS-POINTER
 ON OVERFLOW
 PERFORM TOO-BIG
 NOT ON OVERFLOW
 PERFORM OK-ACTIONS
 END-STRING

As you might recall from discussions about the MOVE verb, MOVE space fills a receiving field if the

value received is too small.

Since STRING does not do this, it is best to initialize the receiving field, and then use POINTER and

ON OVERFLOW clauses, as illustrated above.

After this statement, POINTER contains 17, the number of the next free byte (which is why we set it

to 1 at the beginning).

Note: Specifying POINTER in this way requires setting it to a positive value at the start, or nothing

will appear in the output string.

The ON OVERFLOW clause is triggered if the STRING is impossible because the number of characters

being transferred is too large for the receiving field.

ON OVERFLOW will also be triggered if a POINTER clause cannot occur, which would happen if the

pointer field is less than 1 or greater than the number of bytes in the receiving field.

UNSTRING Statement

UNSTRING uses delimiters to divide up a string of characters. For example:

01 INPUT-NAME PIC X(30) VALUE 'PATRICIA**HUMPHREYS'.
01 RECEIVING-FIELDS.
 03 R-FIELD-1 PIC X(12).
 03 R-FIELD-2 PIC X(12).
 03 R-FIELD-3 PIC X(12).

 UNSTRING INPUT-NAME DELIMITED BY "*"
 INTO R-FIELD-1 R-FIELD-2 R-FIELD-3

After this statement:

 R-FIELD-1 contains “PATRICIA”

 R-FIELD-2 is blank (there is nothing before the next delimiter)

 R-FIELD-3 contains “HUMPHREYS”.

The UNSTRING format, as you might expect, works in the opposite way to STRING. Use it to divide up

a string of characters.

It works by recognizing delimiter characters.

Copyright © Micro Focus 2015-2016. All rights reserved.

09 Data Manipulation

109

Reference Modification

Reference modification allows you to examine or modify part of a string. For example:

01 WS-ALPHABET PIC X(26) VALUE 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

01 WS-SMALLER-STRING PIC X(10) VALUE SPACES.

 MOVE WS-ALPHABET(12:6) TO WS-SMALLER-STRING.

This will result in WS-SMALLER-STRING containing "LMNOPQ"

The 12 in WS-ALPHABET(12:6) is the start position and the 6 is the length.

If you want to move from position 12 in WS-ALPHABET to the end of the data item then the

following syntax does this, without having to define the length of the string, then you can miss out

the length.

 MOVE WS-ALPHABET(12:) TO WS-SMALLER-STRING.

Module Summary
At the end of this module you should now be able to:

 Explain the functionality of the INITIALIZE verb

 Use the various arithmetic COBOL verbs, such as ADD, SUBTRACT, MULTIPLY, DIVIDE and

COMPUTE

 Use the verbs for manipulating character data, such as INSPECT, STRING and UNSTRING

 Explain the role of reference modification

Exercise 1
Check out the following syntax.

 UNSTRING [field]

 DELIMITED BY (ALL) [literal or field name]

 OR (ALL) [literal or field name] etc.)

 INTO [field name]

 (DELIMITER [field name])

 (COUNT [field name])

 INTO [field name]

 (DELIMITER [field name])

 (COUNT [field name] etc)

 [previous three fields repeated as necessary]

 (POINTER [field name])

 (TALLYING IN [field name])

 (ON OVERFLOW [action(s)])

 (NOT ON OVERFLOW [action(s)])

 (END-UNSTRING)

This can be explained as follows:

 UNSTRING can use many different potential delimiters to separate out each substring.

 In each case, the field specified by DELIMITER holds the actual delimiter used.

 The COUNT field records how many bytes were transferred?

 POINTER keeps track of the total number of bytes moved over. As with STRING, set it to a

positive value before the statement takes place.

Copyright © Micro Focus 2015-2016. All rights reserved.

09 Data Manipulation

110

 TALLYING IN keeps count of the total number of receiving fields that contain data when the

UNSTRING finishes.

 ON OVERFLOW and NOT ON OVERFLOW are as before

Further Questions

1. Why must POINTER be set to a positive value?

2. Which is likely to be the more useful clause, ON OVERFLOW or NOT ON OVERFLOW?

Exercise 2
Switch to workspace 09_01_DataManipulation. This is bringing together much of what you have

seen so far. Spend some time looking at the program in here. Debugging is a good way to study it.

(You will see a feature we have not described yet – that is the use of PIC Z for zero suppression. This

will be covered shortly.)

Exercise 3
1. Here is the specification for the program, followed by the code itself.

2. The program reads in a file of sales staff records and does the following:

a. The input file may have any number of records (including 0).

b. All input records contain a one-character region (“N”, “S”, “E” or “W”), and an eight-

digit sales total field (six digits, two decimal places).

c. Generate four totals, one for each region. As each record is read, update the

appropriate total with the value in the sales total.

d. At the end of the program, all totals display, along with average sales for each

region. We therefore need a record count for each region.

Consider the following points regarding this code.

1. Before calculating any average, the program makes a check to ensure that records were

found for that region. This avoids a “divide by zero” error.

2. STRING produces messages, which are stored in WS-MESSAGE and from there DISPLAYed.

Record counts employ normal fields, and so 4 displays as “0004”. However, to show the

difference in appearance, edited fields are used for the averages. (A later module discusses

edited fields.) Briefly, edited fields make a number more readable. Each edited field uses the

format Z(5)9.99, which replaces any leading zeros with spaces (hence the Z). An explicit

period (full stop) is inserted before the decimal part of the field, thus giving a value of, for

example, 41504.88 instead of 04150488. Edited fields are very useful in making numbers

and results of calculations more legible. They are not designed for calculation; therefore,

numbers are moved to them after calculations are complete.

3. All the working-storage counts are PIC 9 DISPLAY rather than COMP. This is because STRING

manipulates only character data.

This Example is shown below

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

 SELECT INFILE ASSIGN "INFILE.DAT".

Copyright © Micro Focus 2015-2016. All rights reserved.

09 Data Manipulation

111

DATA DIVISION.

FD INFILE.

01 INREC.

 03 REGION PIC X.

 88 NORTH VALUE "N".

 88 SOUTH VALUE "S".

 88 EAST VALUE "E".

 88 WEST VALUE "W".

 03 IN-TOTAL PIC 9(6)V99.

WORKING-STORAGE SECTION.

01 WS-EOF PIC 9 VALUE 0.

88 END-OF-FILE VALUE 1.

01 WS-NUMERICS VALUE ZERO.

 03 WS-N-RECORDS PIC 9(4).

 03 WS-S-RECORDS PIC 9(4).

 03 WS-E-RECORDS PIC 9(4).

 03 WS-W-RECORDS PIC 9(4).

 03 WS-N-TOTAL PIC 9(10)V99.

 03 WS-S-TOTAL PIC 9(10)V99.

 03 WS-E-TOTAL PIC 9(10)V99.

 03 WS-W-TOTAL PIC 9(10)V99.

 03 WS-N-AVERAGE PIC 9(6)V99.

 03 WS-S-AVERAGE PIC 9(6)V99.

 03 WS-E-AVERAGE PIC 9(6)V99.

 03 WS-W-AVERAGE PIC 9(6)V99.

01 WS-EDITED-FIELDS.

 03 WS-EDITED-N PIC Z(5)9.99.

 03 WS-EDITED-S PIC Z(5)9.99.

 03 WS-EDITED-E PIC Z(5)9.99.

 03 WS-EDITED-W PIC Z(5)9.99.

01 WS-MESSAGE PIC X(80).

PROCEDURE DIVISION.

PROG-PARA.

 PERFORM INIT-PARA.

 PERFORM BOD-PARA.

 PERFORM END-PARA.

INIT-PARA.

 DISPLAY "STARTING CALCULATION PROGRAM".

 OPEN INPUT INFILE.

 READ INFILE

 AT END MOVE 1 TO WS-EOF.

BOD-PARA.

 PERFORM PROCESS-REC UNTIL END-OF-FILE.

END-PARA.

 IF WS-N-RECORDS > 0

 DIVIDE WS-N-TOTAL BY WS-N-RECORDS

 GIVING WS-N-AVERAGE ROUNDED

 END-IF

 IF WS-S-RECORDS > 0

 DIVIDE WS-S-TOTAL BY WS-S-RECORDS

 GIVING WS-S-AVERAGE ROUNDED

 END-IF

 IF WS-E-RECORDS > 0

 DIVIDE WS-E-TOTAL BY WS-E-RECORDS

 GIVING WS-E-AVERAGE ROUNDED

 END-IF

 IF WS-W-RECORDS > 0

 DIVIDE WS-W-TOTAL BY WS-W-RECORDS

 GIVING WS-W-AVERAGE ROUNDED

 END-IF

 MOVE SPACES TO WS-MESSAGE.

Copyright © Micro Focus 2015-2016. All rights reserved.

09 Data Manipulation

112

 STRING WS-N-RECORDS " " "N RECORDS, "

 WS-S-RECORDS " " "S RECORDS, "

 WS-E-RECORDS " " "E RECORDS, "

 WS-W-RECORDS " " "W RECORDS"

 INTO WS-MESSAGE.

 DISPLAY WS-MESSAGE.

 MOVE WS-N-AVERAGE TO WS-EDITED-N

 MOVE WS-S-AVERAGE TO WS-EDITED-S

 MOVE WS-E-AVERAGE TO WS-EDITED-E

 MOVE WS-W-AVERAGE TO WS-EDITED-W

 MOVE SPACES TO WS-MESSAGE.

 STRING "N AVE = " WS-EDITED-N ", "

 "S AVE = " WS-EDITED-S ", "

 "E AVE = " WS-EDITED-E ", "

 "W AVE = " WS-EDITED-W

 INTO WS-MESSAGE

 DISPLAY WS-MESSAGE

 CLOSE INFILE

 STOP RUN.

PROCESS-REC.

 EVALUATE TRUE

 WHEN NORTH

 ADD 1 TO WS-N-RECORDS

 ADD IN-TOTAL TO WS-N-TOTAL

 WHEN SOUTH

 ADD 1 TO WS-S-RECORDS

 ADD IN-TOTAL TO WS-S-TOTAL

 WHEN EAST

 ADD 1 TO WS-E-RECORDS

 ADD IN-TOTAL TO WS-E-TOTAL

 WHEN WEST

 ADD 1 TO WS-W-RECORDS

 ADD IN-TOTAL TO WS-W-TOTAL

 END-EVALUATE

 READ INFILE AT END MOVE 1 TO WS-EOF.

This produces output similar to the following:

Starting calculation program

0004 N records, 0006 S records, 0008 E records, 0006 W records

N ave = 10022.98, S ave = 41504.88, E ave = 84961.77, W ave = 36787.15

1. What is the reason for the ‘IF WS-n-RECORDS > 0’ tests in END-PARA?

2. We know that STRING does not pad the receiving field with spaces, so why does this

program not clear out WS-MESSAGE after the first time it is used, before the second

STRING?

3. As stated, the PIC Z fields will hold the entire output of the PIC 9(6)v99 fields, and will also

show the decimal point. Does this mean they are the same size as the PIC 9 fields, or are

they longer?

Optional Exercises
There are a number of other simple projects that you may choose to study, to gain further familiarity

with the features we have described so far. These are found by switching to workspaces:

Copyright © Micro Focus 2015-2016. All rights reserved.

09 Data Manipulation

113

 09_02_Initialize_replacing

 09_03_Inspect_Tallying

 09_04_String_Inspect_Unstring

Quick Quiz
1. What are the five verbs that can be used to perform arithmetic calculations?

2. Three of the verbs share the same number of formats – what is this number?

3. Is rounding on or off by default?

4. What are the three string manipulation verbs in COBOL?

5. What verbs use DELIMITED BY?

6. What does the POINTER clause do?

7. Which of the following arithmetic statements are syntactically correct?

a. ADD WS-ITEM-1 WS-ITEM-2 TO WS-ITEM-4 AND WS-ITEM-5.

b. COMPUTE WS-RESULT = 2.667 * 5.4334 ROUNDED.

c. MULTIPLY CEO-SALARY BY 1.1.

d. ADD 2.3 -11 TO WS-RESULT-1 WS-RESULT-2.

Copyright © Micro Focus 2015-2016. All rights reserved.

10 Repeating Data

114

10 Repeating Data

Introduction
Intelligent use of multi-dimensional tables can rapidly speed up program development and add

clarity to application logic for maintenance programmers.

Here we become familiar with the COBOL constructs for defining and manipulating these tables.

Module Objectives
By the end of this module you will be able to:

 Explain the need for representation of repeating data in COBOL.

 Use subscripts and indexes to manipulate tables of such data.

 Use PERFORM with repeating data.

 Use different forms of the SEARCH verb to access a table.

Representing Repeating Data
A very common business need is to be able to access and manipulate groups, or occurrences, of data

that are of the same size and type. For example, a monthly salesperson record may need to show:

 Name

 Salary

 5 sets of weekly sales figures

This group of data repeats. These could be expressed as shown below:

01 MONTHLY-SALES PIC 9(8)V99
01 SALES-RECORD.
 03 SALES-NAME PIC X(20).
 03 SALES-SALARY PIC 9(6)V99.
 03 SALES-WEEK-1 PIC 9(5)V99.
 03 SALES-WEEK-2 PIC 9(5)V99.
 03 SALES-WEEK-3 PIC 9(5)V99.
 03 SALES-WEEK-4 PIC 9(5)V99.
 03 SALES-WEEK-5 PIC 9(5)V99.

However, this does not express the whole truth (it does not show that there is a repeating field).

If we wanted to calculate the monthly sales figures, we could write code like:

 ADD SALES-WEEK-1 SALES-WEEK-2
 SALES-WEEK-3 SALES-WEEK-4
 SALES-WEEK-5
 GIVING MONTHLY-SALES

A better way to represent the data is in a table as follows, using the OCCURS clause:

01 MONTHLY-SALES PIC 9(8)V99
01 SALES-RECORD.
 03 SALES-NAME PIC X(20).
 03 SALES-SALARY PIC 9(6)V99.
 03 SALES-WEEK PIC 9(5)V99 OCCURS 5.

Copyright © Micro Focus 2015-2016. All rights reserved.

10 Repeating Data

115

A table holds a set of different data items that have the same definition. The items in the table can

be accessed using a reference to the item, called a subscript. A table is defined using the OCCURS

clause in the DATA DIVISION. We could define the information in the previous code using a table, as

above. We now have a much cleaner way of calculating the monthly sales figures:

01 WS-SUB PIC 9.

 PERFORM VARYING WS-SUB FROM 1 BY 1 UNTIL WS-SUB > 5
 ADD SALES-WEEK(WS-SUB) TO MONTHLY-SALES
 END-PERFORM

 The PERFORM verb starts by setting WS-SUB to 1, and as the subscript is not greater than 5,

SALES-WEEK(1) is added to MONTHLY-SALES (which should have been initialized at some

point).

 The loop goes around again. WS-SUB is incremented automatically (BY 1) and the second

occurrence is added. This goes on until SALES-WEEK(5) has been added.

 The next time around the UNTIL is now true, so the PERFORM stops.

 Although this code takes up as many lines on the page as the explicit adding of all five

occurrences, it is far more logical.

 Furthermore, it would be very straightforward to modify both the record and the code to

cope with 52 entries.

This is using a variation of the PERFORM statement that we have not yet seen. Instead of

PERFORMing a paragraph or section, this version of the PERFORM is called an in-line PERFORM and

performs the embedded code up to the END-PERFORM (This is COBOL, post 1985).

Keeping a subscript in range

Unlike in some programming languages, in COBOL, an array subscript starts at 1, not 0. So a subscript

should never go below 1, or above the maximum number specified in the OCCURS.

For example, when using OCCURS 10, the subscript pointing to the table should never go below 1 or

exceed 10, or it will try and access memory used by something else. At runtime this could cause the

program to crash.

A related error is to use a subscript that is too small. For example, a table that OCCURS 100 must

have a subscript PIC 999. It is a common mistake to make the subscript PIC 99, which works perfectly

until the subscript is 99 and 1 is added. The subscript then resets to zero. At the very least, the

program will do something wrong.

Look up tables

Lookup tables are very common in COBOL programs.

Copyright © Micro Focus 2015-2016. All rights reserved.

10 Repeating Data

116

The program matches against the first column. It then reads values from the other columns.

The lookup table needs to use an OCCURS, and also VALUE clauses.

VALUE clauses cannot be used with OCCURS, but REDEFINES gets round this restriction. (of course,

tables often get populated by reading from a data file). If the data above was to be hard coded in a

COBOL program, then it would be done as follows:

01 WS-PETFOOD.
 03 PIC X(22) VALUE '01Dog Food Large 2799'.
 03 PIC X(22) VALUE '02Cat Food Large 2399'.
 03 PIC X(22) VALUE '03Dog Food Medium 1750'.
 03 PIC X(22) VALUE '04Cat Food Medium 1650'.
 03 PIC X(22) VALUE '05Dog Food Small 0999'.
 03 PIC X(22) VALUE '06Cat Food Small 0899'.
01 WS-PETFOOD-REDEF REDEFINES WS-PETFOOD.
 03 WS-PET-DETAILS OCCURS 6.
 05 WS-TABLE-NUM PIC 99.
 05 WS-FOOD-DESCRIPTION PIC X(16).
 05 WS-PRICE PIC 99V99.

Exercise 1

Switch to the workspace 10_01_Repeating_Data.

There are 2 programs in this project. Study both of them and see the way in which repeating data is

used.

Indexes

An index is another way of accessing a lookup table (it holds a relative address of the element it is

looking at). Each index can only be associated with a single table. (So if you have multiple tables you

will need to define a different index for each). You do not declare an index as a COBOL filed in data

division. Instead by referring to it in the occurs definition, the declaration happens automatically.

Indexes have two advantages over subscripts:

1. Indexes hold a pointer to each table entry, providing more efficient access. (This is

especially true in mainframe COBOL – less so more recently).

2. If an indexed table is sorted (as the pet food example was), then it can be searched very

efficiently, using the so-called “binary chop” method.

Subscripts v Indexes

This table must be accessed using a subscript:

Copyright © Micro Focus 2015-2016. All rights reserved.

10 Repeating Data

117

01 WS-PETFOOD-REDEF REDEFINES WS-PETFOOD.
 03 WS-PET-DETAILS OCCURS 6.
 05 WS-TABLE-NUM PIC 99.
 05 WS-FOOD-DESCRIPTION PIC X(15).
 05 WS-PRICE PIC 99V99.

This next table may be accessed by an index or a subscript:

01 WS-PETFOOD-REDEF REDEFINES WS-PETFOOD.
 03 WS-PET-DETAILS OCCURS 6 indexed by pet-ix.
 05 WS-TABLE-NUM PIC 99.
 05 WS-FOOD-DESCRIPTION PIC X(15).
 05 WS-PRICE PIC 99V99.

NOTE: To move a value to an index, do not use the MOVE statement; instead, use SET. We shall see

this later.

Using the SEARCH verb

Provided that the table is indexed, you can use the SEARCH verb to find the entry you require.

• Use SEARCH for unsorted tables

• Use SEARCH ALL for sorted tables

SEARCH starts at the beginning of the table and searches to the end, which is not efficient across

large tables.

SEARCH ALL is more efficient because it performs a binary search starting in the middle determining

whether the value is greater or less than the item being searched. This splitting process continues

until the SEARCH ALL is complete. To use SEARCH ALL, the table must be indexed and the elements

of the table must be in ascending or descending sequence.

Exercise 2

Switch to the workspace 10_01_Repeating_Data2.

There are 2 programs in this project, both using indexes. One program uses SEARCH and the other

uses SEARCH ALL.

Study both of them and see the way in which repeating data is used. Look at them in the order:

 PetFoodtablesearch.cbl

 PetFoodtablesearchall.cbl

Modifying index values

Examples of changing the value of an index:

 SET PET-IX TO 1
 SET PET-IX UP BY 1
 SET PET-IX DOWN BY WS-NUM

To set one index value to the value of another index:

 SET IX-2 TO IX-1

Copyright © Micro Focus 2015-2016. All rights reserved.

10 Repeating Data

118

Multi-dimensional tables
It is possible to have an OCCURS within an OCCURS (two-dimensional table), or even more

dimensions, in COBOL. For example:

01 WS-SALES-DATA.
 03 WS-REGION OCCURS 10.
 05 WS-REGION-NAME PIC X(20).
 05 WS-SALESPERSON OCCURS 20.
 07 WS-PERSONS-NAME PIC X(20).
 07 WS-PERSONS-SALES PIC 9(5)V99 OCCURS 52.

To access particular fields:

 WS-REGION(WS-SUB-1)
 WS-PERSONS-NAME(WS-SUB-1, WS-SUB-2)
 WS-PERSONS-SALES(WS-SUB-1, WS-SUB-2, WS-SUB-3)

You can have tables within tables, thus creating a multi-dimensional table. Multi-dimensional tables

have multiple OCCURS fields. OCCURS fields might contain fields that might themselves occur, and

so on.

The above example shows tables within tables. This provides information on ten regions, each with

twenty salespeople and each of them having 52 sets of sales results. Everything is held under one 01

level.

Referencing data items in this sort of table is not difficult; for example WS-SALESPERSON will need

two subscripts as shown above. The highest level index appears first. Use commas to make the text

clearer if you wish.

Variable length tables
If your table has unknown length at compilation time, this size can be set at run time, using

OCCURS...DEPENDING syntax. E.g.

01 OUTREC.
 03 OUT-NAME PIC X(20).
 03 OUT-ADDRESS.
 05 OUT-ADDR-LINE PIC X(20) OCCURS 3.
 03 OUT-COMMENT-COUNT PIC 999.
 03 OUT-COMMENTS.
 05 OUT-COMMENT-BYTE PIC X OCCURS 0 TO 100 DEPENDING ON OUT-COMMENT-COUNT.

The OCCURS clause can be used to define a variable length table or field. Create a variable length

table by using the DEPENDING ON clause in the OCCURS clause. The number of items in the table

depends on a data item, which is used in the DEPENDING ON clause. When working with a variable

length table, you must also specify the maximum and minimum number of items in the table in the

OCCURS clause.

The following is an example of its use:

01 CUSTOMER-RECORD.
 03 CUSTOMER-NO PIC 9(6).
 03 CUSTOMER-BALANCE PIC S9(8)V99.
 03 CUSTOMER-INVOICE-CNT PIC 999.
 03 CUSTOMER-INVOICE OCCURS 1 TO 500 DEPENDING ON CUSTOMER-INVOICE-CNT.

Copyright © Micro Focus 2015-2016. All rights reserved.

10 Repeating Data

119

 05 INVOICE-NO PIC 9(6).
 05 INVOICE-DATE PIC 9(8).
 05 INVOICE-AMT PIC 9(6)V99.

 ADD 1 TO CUSTOMER-INVOICE-CNT
 MOVE WS-INVOICE-NO TO INVOICE-NO(CUSTOMER-INVOICE-CNT)
 MOVE WS-TODAYS-DATE TO INVOICE-DATE(CUSTOMER-INVOICE-CNT)
 MOVE WS-INVOICE-AMT TO INVOICE-AMT(CUSTOMER-INVOICE-CNT)

Module Summary
At end of this module you are now able to:

 Explain the need for representation of repeating data in COBOL

 Use subscripts and indexes to manipulate tables of such data

 Use PERFORM with repeating data

 Use different forms of the SEARCH verb to access a table

Exercise 3
There a couple of other brief projects that you may find useful. They are found by switching to

workspaces:

• 10_03_Variable size array

• 10_04_Table Indexing

Quick Quiz
1. Would a PIC 99 subscript be suitable for an OCCURS 100 table?

a. YES

b. NO

2. What is the minimum value a subscript should ever contain while you are using it?

a. 0

b. 1

c. 100

d. There is no minimum

3. What is the difference between SEARCH and SEARCH ALL?

a. SEARCH requires the table to be sorted

b. SEARCHALL requires the table to be sorted

c. There is no difference

4. What happens if you do not set the index on a non-sorted table SEARCH?

a. You will not find the item you require

b. You will start the search at an unknown place

c. That is fine, no problem

5. What is the clause that tests for 'entry not found in the table'?

a. IF FOUND

b. IF data-item = . . .

c. WHEN FOUND

d. WHEN data-item = . . .

6. Both SET and MOVE can be used with indexes

a. TRUE

Copyright © Micro Focus 2015-2016. All rights reserved.

10 Repeating Data

120

b. FALSE

7. Both SET and MOVE can be used with subscripts

a. TRUE

b. FALSE

8. An index can be used on more than one table

a. TRUE

b. FALSE

9. A subscript can be used on more than one table

a. TRUE

b. FALSE

Copyright © Micro Focus 2015-2016. All rights reserved.

11 Printing and Reports

121

11 Printing and Reports

Introduction
Any business programming system will almost certainly require report generation. Users frequently

create reports from static data using interactive report-writing tools. Moving beyond this, COBOL

provides very simple and flexible methods when the required data can be captured only during the

program run itself. So print programs, which produce reports, rather than data files, are common.

Print programs present different challenges both in the design stage and the COBOL procedural

coding.

This module examines the following main areas:

 The range of edited fields available in COBOL and their uses.

 The COBOL differences found in a print program.

 The design implications.

Module Objectives
By the end of this module you will be able to:

 List the different types of edited fields used for printing or display.

 List the COBOL considerations that are relevant when designing a print program.

 Set up heading, detail, and footer lines.

 Design a print program.

Edited Fields
Edited fields offer a range of ways to change a value (usually a number) so that it is easier to read,

and more meaningful.

Originally intended for printed reports, edited fields are also useful for DISPLAYed fields

Edited fields fall into the following types:

 Handling leading zeros (with replacement), commas, and decimal points

 Currency symbols

 Plus (+) and minus (-) signs

 Credit and debit symbols

 Insertion characters such as / in a date or : in a time

Leading Zeros

Look at the following example:

01 WS-NO PIC 9(6)V99.
01 WS-EDITED-NO PIC Z(5)9.99.

The Picture clause has been changed to Z(5)9.99

Copyright © Micro Focus 2015-2016. All rights reserved.

11 Printing and Reports

122

In this example, this means that if there are any leading zeros in the data item, when it is displayed,

up to 5 leading zeros are changed to spaces.

The use of the decimal point in this field, instead of the V means that the “implicit” decimal point

has been replaced with a “real” one.

So if these data items contain any of the following values the result of displaying the value is:

Value/Picture 9(6)V99 Z(5)9.99

1234.56 00123456 1234.56

123456.78 12345678 123456.78

0 00000000 0.00

.34 00000034 0.34

A further example shows the picture strings 9(6)V99, Z(6).99, ZZZ999.99

Value/Picture 9(6)V99 Z(6).99 ZZZ999.99

1234.56 00123456 1234.56 1234.56

123456.78 12345678 123456.78 123456.78

0 00000000 0.00 000.00

.34 00000034 0.34 000.34

12.34 00001234 12.34 012.34

The main thing to note here is that numeric edited picture string, as illustrated above are NOT

numeric fields and cannot be used in any calculations. Any calculation must be carried out on the

numeric field and then the edited field used in any display statements by first doing something like:

 MOVE WS-NO TO WS-EDITED-NO
 DISPLAY WS-EDITED-NO

The MOVE is done, as we would hope, by aligning the data on decimal point.

Blank when zero

Normally we want to see when the first digit to the left of any decimal point is zero, hence Z(5)9.99

for example

If we want to suppress a zero number completely, we can use BLANK WHEN ZERO. E.g.

01 WS-EDITED-TOTAL PIC Z(5)9.99 BLANK WHEN ZERO.

The same result for a zero could be achieved with:

01 WS-EDITED-TOTAL PIC Z(6).ZZ.

Copyright © Micro Focus 2015-2016. All rights reserved.

11 Printing and Reports

123

However this will not give identical results; see below.

Value/Picture 9(6)V99 Z(5)9.99
BLANK WHEN ZERO

Z(6).ZZ

1234.56 00123456 1234.56 1234.56

123456.78 12345678 123456.78 123456.78

0 00000000

.34 00000034 0.34 .34

.01 00000001 0.01 .01

Other leading characters

In some cases you may want to precede a numeric display item with asterisks. This is often used in

check (Cheque) printing to help prevent fraud. So this is done with the picture clause:

01 WS-PROTECTED PIC *(5)9.99.

Value/Picture 9(6)V99 *(5)9.99

1234.56 00123456 **1234.56

123456.78 12345678 123456.78

0 00000000 *****0.00

.34 00000034 *****0.34

Adding Commas and decimal point

Commas can be inserted into an edited field.

They 'disappear' like Zs if they are not needed.

They always take up a byte, whether they are visible or not, so WS-EDITED-BENEFITS always

occupies thirteen bytes, regardless of the value it contains.

For example:

01 WS-BENEFITS PIC 9(8)v99.
01 WS-EDITED-BENEFITS PIC ZZ,ZZZ,ZZ9.99.

The following shows some examples:

Value/Picture 9(8)V99 ZZ,ZZZ,ZZ9.99

1234.56 0000123456 1,234.56

123456.78 0012345678 123,456.78

12345678.90 1234567890 12,345,678.90

0 0000000000 0.00

.34 0000000034 0.34

Currency symbols

Currency symbols are very similar to Zs.

Copyright © Micro Focus 2015-2016. All rights reserved.

11 Printing and Reports

124

The symbol will 'move up' to the first non-zero number, space filling to the left if appropriate

So always add one extra symbol, or you will lose a digit if the number field is full.

01 WS-BENEFITS PIC 9(8)v99.
01 WS-EDITED-BENEFITS PIC $$$,$$$,$$9.99.

Value/Picture 9(8)V99 $$$,$$$,$$9.99

1234.56 0000123456 $1,234.56

123456.78 0012345678 $123,456.78

12345678.90 1234567890 $12,345,678.90

0 0000000000 $0.00

.34 0000000034 $0.34

The actual currency symbol that is displayed is determined by a definition in the Environment

Division.

This currency symbol is defined in a paragraph we have not discussed before: SPECIAL-NAMES

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
 CURRENCY SIGN IS '£'.

You can also swap the functions of decimal point and comma, as happens in some European

countries.

For example:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
 DECIMAL-POINT IS COMMA.

Plus and Minus Signs

You can define floating plus and minus signs as follows:

01 WS-SIGNED-NUMBER PIC S9(8).
01 WS-ED-MINUS-1 PIC -(7)9.
01 WS-ED-PLUS-1 PIC +(7)9.

The results of the display of these data items would be:

Value/Picture S9(8) -(7)9 +7(9)

1234 00001234+ 1234 +1234

-1234 00001234- -1234 -1234

Copyright © Micro Focus 2015-2016. All rights reserved.

11 Printing and Reports

125

Credit and Debit Signs

The two fields CR and DB are both used to indicate negative values. These symbols are specifically

available in COBOL numeric edited fields.

01 WS-CRED-1 PIC Z(7)9.99CR.
01 WS-DEB-1 PIC Z(7)9.99DB.

The CR field is often for use on bills, to show when a customer owes a negative amount (i.e. when

they are in credit). In both cases the CR or DB only appears when the field is negative.

Value/Picture S9(8) Z(7)9.99CR Z(7)9.99DB

1234 00001234+ 1234 1234

-1234 00001234- 1234CR 1234DB

Insertion characters

There are four insertion characters that you may wish to use

 The slash "/" character is commonly used with dates

 The colon "/" character is commonly used with time

 The "B" character allows you insert a space, or Blank

 It is also possible to insert a "0" into a field

Example 1

01 WS-DATE PIC 9(8).
01 WS-EDITED-DATE PIC 9999/99/99.

If WS-DATE contains 20120707 and is moved to WS-EDITED-DATE then WS-EDITED-DATE will contain

2012/07/07

Example 2

01 WS-CRED-CARD-NO PIC X(16).
01 WS-EDITED-CRED-CARD-NO PIC X(4)BX(4)BX(4)BX(4).

If WS-CRED-CARD-NO contains 1234567890123456 and is moved to WS-EDITED-CRED-CARD-NO
then WS-EDITED-CRED-CARD-NO will contain 1234 4568 9012 3456.

Example 3

01 WS-SOL PIC 999000.

If you execute the code:

 MOVE 300 TO WS-SOL
 DISPLAY 'Light Speed is: ' WS-SOL ' mph'

You will get the result:

Light Speed is: 300000 mph

Copyright © Micro Focus 2015-2016. All rights reserved.

11 Printing and Reports

126

Coding a Print Program
Using print programs warrants different COBOL elements, including the following:

 Use of LINE SEQUENTIAL rather than RECORD SEQUENTIAL files (default)

 Output lines, to hold the different types of record you create

e.g.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INFILE ASSIGN 'INFILE.DAT'
 ORGANIZATION IS SEQUENTIAL.
SELECT OUTFILE ASSIGN 'OUTPRINT.TXT'
 ORGANIZATION IS LINE SEQUENTIAL.

COBOL includes another type of file, called the LINE SEQUENTIAL file, which is a PC text file. It can be

read and modified by any PC text editor, such as Notepad.

Consequently, the file is described as LINE SEQUENTIAL in the Environment Division.

Up until now we have been using RECORD SEQUENTIAL files, which is the default setting. Such files

as these are COBOL data files, and while you may be able to view them in a text editor, if you try to

alter them, the layout will be damaged and can no longer be read by a COBOL program.

The following shows a typical example of a report file:

Consider the range of output lines that need to be written. A print program will likely include a

heading, a detail line, possibly a subtotal, and a grand total line.

The detail line consists of items from an input record and/or calculations, but the other lines show a

mixture of preset values and items examined at runtime.

The preset items would best be coded with VALUE clauses; however, these cannot be used in the

File Section.

Therefore it is normally best to include several versions of the print line in working storage, and

WRITE the print record FROM the appropriate line.

Copyright © Micro Focus 2015-2016. All rights reserved.

11 Printing and Reports

127

Setting up a print line

A print line is defined as a record (for example) 132 characters. E.g.

FILE SECTION.
FD OUTFILE.
01 OUTREC PIC X(132).

All output record types are set up in working storage, and then the WRITE...FROM verb is used to

write out the appropriate type of record.

 WRITE OUTREC FROM WS-HEADING-LINE AFTER PAGE
 WRITE OUTREC FROM WS-DETAIL-LINE AFTER 3

The AFTER clause positions the line on the page

An example of an output header line could be:

01 WS-HEADING-LINE.
 03 PIC X(13) VALUE 'REPORT DATED'.
 03 WS-EDITED-DATE PIC 9999/99/99.
 03 PIC X(60) VALUE SPACES.
 03 WS-PRINT-PAGE-CNT PIC Z9.

Note

 The use of FILLERs and VALUE clauses

 The heading line is a mixture of these fields and of variable data (the date, and the page

counter)

 The variable parts use edited fields

An example of a detail line could be:

01 WS-DETAIL-LINE.
 03 PIC X(20) VALUE SPACES.
 03 WS-PRINT-NAME PIC X(40).
 03 WS-PRINT-SALES PIC ZZZ,ZZ9.99.

The FILLER is there purely to provide the correct spacing

Other fields are supplied, or calculated elsewhere and moved here, at runtime

Writing a print line

Examples of the syntax used to write a print line are:

1. WRITE OUTREC FROM WS-HEADING-LINE AFTER PAGE
2. WRITE OUTREC FROM WS-DETAIL-LINE AFTER 2
3. WRITE OUTREC FROM WS-DETAIL-LINE

Example 1 shows writing a heading line on a new page

Example 2 shows writing a detail line two lines below the current position (leave a blank line)

Example 3 shows writing a detail line on the next line

Copyright © Micro Focus 2015-2016. All rights reserved.

11 Printing and Reports

128

Designing a Print Program

The design will be driven largely by the format of the output report file.

A print page typically consists of a number of pages (which, theoretically, may be zero).

A print page might include a header page, followed by “normal” pages, which will probably display

some sort of heading.

In a simple report program, the heading precedes multiple detail lines, that is, lines that consist of

data, probably drawn from records read in or calculations made at runtime.

When the program writes a specified number of detail lines, a new page begins, following the same

format.

The program might produce subtotals at, say, a change of region.

Finally, the program might include grand totals or other one-off messages or calculations at the end

of the report.

The design challenge exists on how to reconcile this fairly complex structure with the simple

structure of an input file.

Copyright © Micro Focus 2015-2016. All rights reserved.

11 Printing and Reports

129

A possible view of a print program is shown below:

This view may at first seem contrived; however, it avoids any conflict between input and output files.

“Pages” as such have disappeared; only an iteration of “detail group” exists.

This ensures that detail lines display and also other events – headings or potential start-of or end-of

regions – occur automatically. A sample program, later in this module, uses this approach.

Two special points exist at which we must make sure that particular code takes place: at the very

start to ensure that the first heading appears and at the end to make sure that the last region

finishes.

We could achieve this in two ways. Firstly, the special code could be explicitly called in each case.

Alternatively, the program could force special values into fields at this time.

Using Report Writer
If you are producing many reports you may want to make use of the COBOL Report Writer facility.

Copyright © Micro Focus 2015-2016. All rights reserved.

11 Printing and Reports

130

This mechanism is very powerful for producing reports with headings footings, subheadings, sub

footings, totals and subtotals.

Report writer is not used very often these days, since there are many other report writing

mechanisms, outside the scope of this course. So for the purpose of this training course, this is not

covered in any detail.

We have supplied a workspace 11_02_Report_Writer which contains a program taken from a

standard program supplied by the ANSI COBOL committee in 1983. It was subsequently modified by

Jay Moseley in 2008. http://www.jaymoseley.com/hercules/compiling/crwex06o.htm

You may want to look at this.

You will find fuller examples at the following:

 http://www.pgrocer.net/Cis52/rptwritr.html

 ftp://ftp.software.ibm.com/software/websphere/awdtools/cobolreportwriter/c2643013.pdf

Module Summary
At the end of this module you are now able to:

 List the different types of edited fields used for printing or display

 List the COBOL considerations that are relevant when designing a print program

 Set up heading, detail, and footer lines

 Design a print program

Exercise
You should first switch to the workspace 11_01_Printing.sln.

The program deals with an input file, consisting of records each with

• a one-character region code.

• a twenty-character field for sales person name.

• an eight-digit numeric field (six digits before the decimal point, two after) for that person’s
sales.

 03 IN-REGION PIC X .
 03 IN-NAME PIC X(20) .
 03 IN-SALES PIC 9(6)V99 .

The records will arrive in sorted order, that is, all records of the same region will be grouped

together. The print report output looks something like the following.

Copyright © Micro Focus 2015-2016. All rights reserved.

http://www.jaymoseley.com/hercules/compiling/crwex06o.htm
http://www.pgrocer.net/Cis52/rptwritr.html
ftp://ftp.software.ibm.com/software/websphere/awdtools/cobolreportwriter/c2643013.pdf

11 Printing and Reports

131

You should first of all run the program and look at the results. The results can be seen by looking at

the output text file outprintprt.txt. This file is shown in the solution explorer and can be opened

directly from there, by double-clicking.

You should now examine the COBOL code and debug that code to see how it operates.

Consider the following points about the program.

• The program ACCEPTs the date in and moves to the heading line. When the program finds a new

region, the program SEARCHes for the region in the table WS-REGION-TABLE-REDEF. (If an unknown

region is found, the program terminates immediately.) The program moves the value found to the

“start of region” line. The value found is also stored, so that “new region” is not encountered on every

record.

• Normally, “start of region” immediately follows “end of region;” however, this is not true at the very

start of the program. This explains the pre-setting of WS-REGN to LOW-VALUES.

• The program has to make sure that a page is thrown and headings are printed, at the end of every

page, and at the very start of the program. How is this achieved?

• Is ‘end of region’ always indicated by the start of a new region?

Quick Quiz
1. What is the another way of writing PIC Z,ZZZ,ZZZ.ZZ?

a. PIC ZZZ,(3)

b. PIC Z,ZZZ,(3)VZZ

c. PIC Z,Z(3),Z(3).Z(2)

2. Difference between a floating plus and a floating minus? Which of the following is true?

a. No difference

b. A minus always shows in both cases if the field is negative

c. A plus always shows in both cases if the field is negative

d. A plus always shows only if the field is positive in the case of floating plus

3. Why is B so called?

Copyright © Micro Focus 2015-2016. All rights reserved.

11 Printing and Reports

132

a. B stands for Blank

b. B stands for Bold

c. B has no real meaning

4. Why must you always insert one more currency symbol than you need for the size of the

field?

a. To allow for longer data values

b. To make space for the currency symbol if the field is full

c. No need to add an extra character in the field

d. Currency symbols require extra storage space than normal numeric characters

5. What organization would you expect for a print file?

a. SEQUENTIAL

b. TEXT

c. LINE SEQUENTIAL

d. INDEXED

6. How many blank lines do you get if you WRITE AFTER 4?

a. 1

b. 2

c. 3

d. 4

e. 5

7. How do you make the print program throw a page?

a. Use BEFORE PAGE THROW

b. Use AFTER PAGE

c. Use AFTER PAGE THROW

d. Use AFTER 25 LINES

Copyright © Micro Focus 2015-2016. All rights reserved.

12 Using Indexed Files

133

12 Using Indexed Files

Introduction
The data file handling capability within COBOL is extremely powerful.

Any business application programmer’s skill set should include a full understanding of how to take

advantage of these capabilities.

Up until now we have been using sequential files, where records are accessed, or written, one after

another.

It is not easy to insert a new record, or delete a record, in the middle of such a file.

Sequential files are very common, but not suitable for applications needing to find a particular

record, perhaps to amend or delete it.

The only way to select a chosen record on a sequential file is to read through the whole file until the

correct one is found – hardly an efficient or easy process.

Similarly, inserting a new record into a sequential file might prove difficult.

Indexed files, on the other hand, allow more flexible access.

Finding any record quickly by using its key becomes easier.

Module Objectives
By the end of this module you will be able to:

 Explain the uses of indexed files

 Describe the different key structures

 List the different methods of access and use the associated COBOL statements

 Explain the use of File Status and Declaratives

Indexed File Structure
Each record has a primary key (which is almost always unique) and optional secondary (or alternate)

keys.

A standard indexed file often consists of two physical files, the data file and the index file.

Other variations on an indexed file are for the Data part and the index part to be stored in the same

physical file.

Copyright © Micro Focus 2015-2016. All rights reserved.

12 Using Indexed Files

134

The file handler looks in the index part to determine which record of the data file to access.

You, the COBOL programmer, don't need to know the details of how this is done – you just 'go and

get the record'

Indexed File Keys and Structure

Each record on an indexed file has its own primary key, which is stored as a data field (or fields) in

the record.

If an indexed file contains, for example, employee records, a suitable key would be employee

number. This is the main record key or primary key. We shall see later in this module how to use this

key. This prime key is almost always unique, but COBOL does support non-uniqueness of prime key.

Speaking personally I have never come across a useful non-unique prime key.

Other keys or alternate keys can exist on an indexed file record that can be used instead. These

alternate keys may or may not be unique.

Again considering an employee file, a suitable alternate key would be employee surname. To find an

employee called Smith where the employee number is not known, use the alternate key to find the

appropriate key. There may be several Smiths to search until the program discovers the right one.

An indexed file often consists of two distinct parts: one part contains the data itself similar to a

sequential file, and the other part contains the index information, which is used to access the right

part of the data.

In practice, this may never be an issue. Yet, some situations might arise where this becomes

important. For example, on some operating systems and within some versions of COBOL, these two

parts are in fact two separate physical files.

So, to move the file to a different place, move both parts. Similarly, to calculate the amount of disk

storage required for a certain file, consider the size of the index information for each record.

Thankfully, knowledge of this is not required when creating these files. The COBOL indexed file run-

time system automatically creates them and your program will have only a logical view of a single

file.

Accessing an indexed file

You can access an indexed file in one of three ways:

 Random access – go anywhere in the file, to insert, amend or delete a specific record

 Sequential access – read through, or write to, part or all of the file. The records will be

processed in key order.

 Dynamic access – carry out both random and sequential access in the same program. A

program that updates certain records on an employee file and then reads sequentially

through all of them to produce paychecks, would be an example of the dynamic access.

File definition

The select statement for an indexed file contains information as shown below.

Copyright © Micro Focus 2015-2016. All rights reserved.

12 Using Indexed Files

135

SELECT EMPLOYEE-FILE ASSIGN 'EMPLOYEE.DAT'
 ORGANIZATION IS INDEXED
 ACCESS IS RANDOM
 RECORD KEY IS EMPLOYEE-NO
 ALTERNATE RECORD KEY IS EMPLOYEE-SURNAME.

The ACCESS IS RANDOM can be replaced with:

 ACCESS IS SEQUENTIAL or

 ACCESS IS DYNAMIC as defined above

If ACCESS is SEQUENTIAL, then the whole clause can be omitted (since it is the default). However, it

is better to leave the clause there for clarity.

The RECORD KEY refers to the unique primary key on the record that can be used to access any

particular record.

The ALTERNATE RECORD KEY refers to the alternate key on the record that can be used to access any

particular record.

The indexed file key (referred to as RECORD KEY) can be a compound of more than one field.

It is often stated that the key must be alphanumeric, meaning a PIC X elementary field or a group

field.

This is not strictly true, but a MOVE to the key field (which is how the key is set) will always be

treated as an alphanumeric move.

So, it is recommended that the key is alphanumeric. If the key really does have to be a number, then

a redefinition can be used to “cheat.”

In this example the FD for the file could contain:

FD EMPLOYEE-FILE.
01 EMPLOYEE-REC.
 03 EMPLOYEE-NO PIC X(5).
 03 EMPLOYEE-INITS PIC X(4).
 03 EMPLOYEE-SURNAME PIC X(16).
 03 EMPLOYEE-SALARY PIC 9(6)V99.
 03 EMPLOYEE-DEPT PIC X(10).

If the key field is actually numeric, this could be dealt with as shown below:

FD EMPLOYEE-FILE.
01 EMPREC.
 03 EMPLOYEE-NO.
 05 EMPLOYEE-NO-NUMERIC PIC 9(5).
 03 EMPLOYEE-INITS PIC X(4).
 03 EMPLOYEE-SURNAME PIC X(16).
 03 EMPLOYEE-SALARY PIC 9(6)V99.
 03 EMPLOYEE-DEPT PIC X(10).

The key is now EMPLOYEE-NO a group field, so it automatically has an alphanumeric picture.

Random Access

To open a file for Random access, you must first define the file as:

Copyright © Micro Focus 2015-2016. All rights reserved.

12 Using Indexed Files

136

SELECT EMPLOYEE-FILE ASSIGN 'EMPLOYEE.DAT'
 ORGANIZATION IS INDEXED
 ACCESS IS RANDOM
 RECORD KEY IS EMPLOYEE-NO
 ALTERNATE RECORD KEY IS EMPLOYEE-SURNAME.

Or ACCESS IS DYNAMIC

The file OPEN statement is then:

OPEN I-O EMPLOYEE-FILE

There are three possible actions you may want to carry out:

 Amend an existing record

 Create a new record

 Delete an existing record

Amend an existing record

Firstly, find the record you wish to amend using the correct value in the key:

MOVE IN-EMP-NO TO EMPLOYEE-NO.
READ EMPLOYEE-FILE KEY IS EMPLOYEE-NO

 INVALID KEY
 DISPLAY 'RECORD NOT FOUND'
 STOP RUN

END-READ.

Here we have moved the key value we want to the key field, and then carried out a READ.

If the record is not found, the INVALID KEY clause is invoked.

An AT END clause would have no relevance here (Why?).

Having retrieved the record, we can change any field or fields, except the key field.

We then REWRITE the record:

REWRITE EMPREC KEY IS EMPLOYEE-NO
 INVALID KEY
 DISPLAY 'FAILURE TO REWRITE '
 STOP RUN

END-REWRITE

Changing the key field would mean we were now dealing with a different record, so a REWRITE

would not be appropriate.

The AT END clause (“no more records on the file”) is not appropriate here.

Instead, use the INVALID KEY clause, which means “if the record specified with this key does not

exist.”

Assuming that the record has been found, all of the fields but one can be changed as appropriate.

(The field that cannot be changed is the key.) The record is then written back to the file with

REWRITE, as shown above.

Copyright © Micro Focus 2015-2016. All rights reserved.

12 Using Indexed Files

137

Again INVALID KEY can be used to check that the REWRITE was successful. In this case, the program

retrieved the record before rewriting it, as we needed the EMPLOYEE-SALARY value.

Because of that, the REWRITE should definitely work.

Create a new record

To create a new record, set up all the fields (including the key), and WRITE

MOVE '12345' TO EMPLOYEE-NO.
*> [set up other fields]_
WRITE EMPREC KEY IS EMPLOYEE-NO

 INVALID KEY
 DISPLAY 'CANNOT INSERT RECORD '
 STOP RUN

END-WRITE

If a record, with that key, already exists on the file, the INVALID KEY clause will be triggered

Delete an existing record

To delete a record, specify the key, and use the DELETE statement:

MOVE IN-EMP-NO TO EMPLOYEE-NO
DELETE EMPLOYEE-FILE KEY IS EMPLOYEE-NO

 INVALID KEY
 DISPLAY 'FAILURE TO DELETE'
 STOP RUN

END-DELETE

If the record does not exist on the file, the INVALID KEY clause will be triggered

Note that the clause is DELETE [file name] rather than DELETE [record name]

The KEY IS phrase

The phrase KEY IS EMPLOYEE-NO is needed if the file contains more than one key. If the file only has

a single key, then this phrase can be omitted.

Closing the indexed file

The close is exactly the same as we have seen for sequential files:

CLOSE EMPLOYEE-FILE

Exercise 1

For this exercise you should switch to the workspace 12_01_Indexed_Files.

Most random-access programs need similar functionality. An indexed file needs changing, in that one or more

records will be inserted, changed or deleted. One method for these amendments is to use a sequential input

file containing details of the changes to be made. The following example uses a sequential input file.

Copyright © Micro Focus 2015-2016. All rights reserved.

12 Using Indexed Files

138

The first byte of the amendment file can be interrogated to identify the type of amendment to which

the record refers. If it is an addition, then all values need to be supplied. If a change, then perhaps

only the changed fields will be specified (alternatively, they could all be supplied). If this is a delete,

then all that is necessary is the record key.

Here is a view of both the amendment file and the indexed file.

Each value in the amendment file will indicate an Add, Change or Delete. The key value may or may not exist

on the indexed file. This yields six possibilities.

 The key value does exist, and this is an Add. This is an Invalid Add.

 The key value does exist, and this is a Change. This is a Valid Change and can be carried out.

 The key value does exist, and this is a Delete. This is a Valid Delete and can be carried out.

 The key vale does not exist, and this is an Add. This is a Valid Add and can be carried out.

 The key value does not exist, and this is a Change. This is an Invalid Change.

 The key value does not exist, and this is a Delete. This is an Invalid Delete.

Copyright © Micro Focus 2015-2016. All rights reserved.

12 Using Indexed Files

139

The following program shows one way of tackling these choices. In “Record Start” the program seeks the key

value on the indexed file, regardless of the amendment type. If the record does not exist, then the program

sets a flag. (The flag must be cleared at a suitable point.) By “Record Body” the program knows whether or not

the record exists and can act accordingly.

The actions and then the COBOL code appear after the program structure.

You should study this program in debug mode to see how the program is behaving.

Copyright © Micro Focus 2015-2016. All rights reserved.

12 Using Indexed Files

140

Accessing an indexed file sequentially

An indexed file can be accessed sequentially using any of its keys. In this example we will just use the

prime key for now.

The SELECT...ASSIGN statement is used to set the access mode

SELECT EMPLOYEE-FILE ASSIGN 'EMPLOYEE.DAT'
 ORGANIZATION IS INDEXED
 ACCESS IS SEQUENTIAL
 RECORD KEY IS EMPLOYEE-NO
 ALTERNATE RECORD KEY IS EMPLOYEE-SURNAME.

You may still open the file I-O, allowing you to amend or delete records as you go.

To read the next record:

READ EMPLOYEE-FILE NEXT
 AT END MOVE 1 TO WS-EOF
END-READ

To change a record:

 COMPUTE EMPLOYEE-SALARY = EMPLOYEE-SALARY * 1.01.
 REWRITE EMPREC

To delete a record

 DELETE EMPLOYEE-FILE

The START statement

Very often you want to start a sequential read at a specific point in an indexed file. The syntax to

achieve this is:

MOVE '00100' TO EMPLOYEE-NO.
START EMPLOYEE-FILE KEY IS EMPLOYEE-NO

 KEY NOT < EMPLOYEE-NO
END-START

If there is a risk that the START will fail (if all the records have a smaller key), add an INVALID KEY

clause to the statement.

Again the KEY IS phrase is only needed if the file contains more than 1 key.

START does not read, it merely positions.

The next sequential read, reads the next record.

READ EMPLOYEE-FILE NEXT
 AT END MOVE 1 TO WS-EOF

END-READ

This also moves the file record pointer forward by one.

Copyright © Micro Focus 2015-2016. All rights reserved.

12 Using Indexed Files

141

The additional syntax (not available in some compilers) provides the reading the previous record

READ EMPLOYEE-FILE PREVIOUS
 AT END MOVE 1 TO WS-EOF

END-READ

Accessing an indexed file dynamically

An indexed file can be accessed both randomly and sequentially in the same program using any of its

keys. The SELECT...ASSIGN statement is used to set the access mode

SELECT EMPLOYEE-FILE ASSIGN 'EMPLOYEE.DAT'
 ORGANIZATION IS INDEXED
 ACCESS IS DYNAMIC
 RECORD KEY IS EMPLOYEE-NO
 ALTERNATE RECORD KEY IS EMPLOYEE-SURNAME.

A dynamic access program consists of two distinct parts:

 the portion of the code where random accessing is carried out

 then sequential processing.

Treat these almost as two separate programs.

This allows 2 kinds of access

Random read

MOVE IN-EMP-NO TO EMPLOYEE-NO.
READ EMPLOYEE-FILE KEY IS EMPLOYEE-NO

 INVALID KEY
 DISPLAY 'RECORD NOT FOUND'
 STOP RUN

END-READ.

Sequential Read

READ EMPLOYEE-FILE NEXT
 AT END MOVE 1 TO WS-EOF

END-READ

It is common in a dynamic access program for the random element to come first, followed by the

whole file being processed sequentially.

To get back to the beginning of the file (to begin sequential READs), we can use START:

MOVE LOW-VALUES TO EMPLOYEE-NO
START EMPLOYEE-FILE KEY IS EMPLOYEE-NO

 KEY NOT < EMPLOYEE-NO
END-STARTR

 READ EMPLOYEE-FILE NEXT

 AT END MOVE 1 TO WS-EOF

 END-READ

Using Alternate Keys
It is often desirable to have alternate keys on an indexed file.

Copyright © Micro Focus 2015-2016. All rights reserved.

12 Using Indexed Files

142

In the case of “employee.dat,” alternate keys could help find a particular employee called “SMITH” if

we did not know the primary key (or if the key we had was incorrect for some reason).

The SELECT…ASSIGN statement would look like:

SELECT EMPLOYEE-FILE ASSIGN 'EMPLOYEE.DAT'
 ORGANIZATION IS INDEXED
 ACCESS IS DYNAMIC
 RECORD KEY IS EMPLOYEE-NO
 ALTERNATE KEY IS EMPLOYEE-SURNAME WITH DUPLICATES.

In the case of “employee.dat,” alternate keys could help find a particular employee called “SMITH” if

we did not know the primary key (or if the key we had was incorrect for some reason).

In this example, it is almost certain that the alternate key will have duplicates.

Alternate Key READ

To read a file using the alternate key, the syntax would be:

MOVE 'SMITH' TO EMPLOYEE-SURNAME.
READ EMPLOYEE-FILE KEY IS EMPLOYEE-SURNAME

 INVALID KEY
 DISPLAY 'NO SURNAME'

END-READ

To read the NEXT record, the syntax would be:

READ EMPLOYEE-FILE NEXT

 AT END MOVE 1 TO WS-EOF

 END-READ

You will need to check yourself when the surname changes

AT END will only be triggered when the real EOF is encountered.

File Errors using file status clause
The AT END and INVALID KEY clauses are used to deal with 'expected' file behavior.

By default, the COBOL runtime deals with anything else that goes wrong.

It may be necessary to deal with other file errors explicitly.

For this, we need to use a file status field. E.g.

SELECT CHANGES-FILE ASSIGN 'CHANGES.DAT'
 FILE STATUS WS-CHG-STATUS.
SELECT EMPLOYEE-FILE ASSIGN 'EMPLOYEE.DAT'
 ORGANIZATION IS INDEXED
 ACCESS IS RANDOM
 RECORD KEY EMPLOYEE-NO
 FILE STATUS WS-EMP-STATUS.

Where the status fields are defined as 2 byte fields.

01 WS-STATUSES.

Copyright © Micro Focus 2015-2016. All rights reserved.

12 Using Indexed Files

143

 03 WS-CHG-STATUS PIC XX.
 03 WS-EMP-STATUS PIC XX.

Once you have defined file status for a file, then this must be used instead of AT END and INVALID

key etc.

If the file operation is successful then the file status value will contain “00”

If there is an error, then certain other values will apply. E.g.

 "10" indicates "No next logical record" (equivalent of AT END)

 "22" indicates "Duplicate key condition" (trying to store a duplicate record when duplicates

are not allowed)

 "23" indicates "No record found" (equivalent to INVALID KEY)

There are many other status code values.

If the first byte of the status code contains ‘9’ then the second byte will contain further information.

To get to this information you will need to redefine the second byte as follows:

 03 WS-EMP-STATUS PIC XX.
 03 WS-EMP-STATUS-EXTRA REDEFINES WS-EMP-STATUS.
 05 WS-EMP-STATUS-1 PIC X.
 05 WS-EMP-STATUS-2 PIC 99 COMP.

The values in this second byte will vary with whatever complier you are using. If you are using the

Micro Focus compiler, then you would need to look in the help system to determine what these

values are. For example a value of 9/65 indicates the file is locked. (Usually because some other user

has opened the file for i-o).

Beware, that if you use file-status then you will need to recode the end-of-file; as shown below:

READ EMPLOYEE-FILE KEY IS EMPLOYEE-SURNAME
 INVALID KEY
 DISPLAY 'NO SURNAME'

END-READ

Will become

READ EMPLOYEE-FILE KEY IS EMPLOYEE-SURNAME
 IF WS-EMP-STATUS NOT = '00'
 DISPLAY 'NO SURNAME'

END-IF

Use of Declaratives
Declaratives are sections of code, which if used, must appear first in the Procedure Division by

inserting the word DECLARATIVES. (Note SECTIONS, not PARAGRAPHS.)

A Declaratives section will be PERFORMed automatically if a file status error occurs. Errors that you

have specifically coded for, such as AT END, do not trigger Declaratives. This allows you to handle

any other errors in file i-o which you have not specifically coded.

Copyright © Micro Focus 2015-2016. All rights reserved.

12 Using Indexed Files

144

If using Declaratives, make sure that the rest of the Procedure Division code is also in a section and

not the same one as the Declarative.

Sections consist of one or more paragraphs; by convention the last paragraph may be an exit

paragraph, marking the end of the section. (The real end of the section is marked by the fact that

another section has been found or by the physical end of the code.)

Example of Declarative:

 PROCEDURE DIVISION.
 DECLARATIVES.
 CHANGES-ERROR SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON INFILE.
 CHANGES-ERROR-ACTIONS.
 DISPLAY 'SERIOUS ERROR ON INPUT FILE '
 'STATUS IS ' WS-IN-STATUS
 CLOSE CHANGES-FILE
 STOP RUN.
 *>[other Declaratives sections]

 MAIN SECTION.
 PARA.
 PERFORM INIT-PARA. *> ETC

Module Summary
At the end of this module you are now able to:

 Explain the uses of indexed files

 Describe the different key structures

 List the different methods of access and use the associated COBOL statements

 Explain the use of File Status and Declaratives

Further Exercises
There a number of solutions that you can look at to help re-enforce your knowledge of the use of

indexed files and sequential files.

Exercise 2

Switch to the workspace 12_03_Indexed File update

This project read a sequential file and applies appropriate update to and indexed file

Study this program and debug it to view the processing

Exercise 3

Switch to the workspace 12_04_Meaningful call with indexed file

The project here shows one program “calling” another program. This is discussed in some detail in

the next module. In this program you can also see a Microfocus extension to the display and accept

Copyright © Micro Focus 2015-2016. All rights reserved.

12 Using Indexed Files

145

verbs, which allow you to position fields at certain positions on the screen. For now, just debug

through the code to see the file handling in action. (Suitable code to use are 102 – 125)

Exercise 4

Switch to the workspace 12_05_Logic errors

This project is not handling an indexed file but a sequential file with 2 record types. The program

here is reading the input file test44.dat and producing a report test44.txt. However it contains 4

bugs.

You should use the knowledge you have gained so far to fix these 4 bugs.

The input file contains the following records:

You will see there are 2 kinds of record indicated by the red and blue marks. Type 1 is a STUDENT

record and Type 2 is a COURSE record

Each COURSE record belongs to the preceding STUDENT

The COURSE records contain a credit amount (Shown in green)

So, for example

 JOE SMITH is studying 3 courses with total credits worth 9 points

 AL JONES is studying 5 courses with total credits worth 13 points.

The report that is produced here is as follows:

Copyright © Micro Focus 2015-2016. All rights reserved.

12 Using Indexed Files

146

There are 4 logic errors here:

 The total number of student shows 6 – but there are only 5

 The Credits for each student are incorrect

 The student JOE SMITH appears twice in the list

 The last student on file, HAROLD HARDWORK is missing from the list

Most of these bugs are due to poor initial program design. Apart from a redesign fix the bugs as best

you can. This is a problem you will face very often, where you will not have the time or budget to

rewrite a program.

Please spend some time fixing this, but if you struggle and want to see a solution, then one can be

found by switching to the workspace 12_02_data10.

Quick Quiz
1. What is the verb to change a record on an indexed file?

a. READ

b. WRITE

c. REWRITE

d. AMEND

e. WRITE OVER

f. DELETE

2. What statement allows you to insert a new record?

a. READ

b. REWRITE

c. WRITE

d. AMEND

e. WRITE OVER

f. DELETE

3. Under what circumstances can a DELETE on an indexed record fail?

a. If the file is not opened for i-o

b. If the record already exists

c. If the record does not exist

d. If the record is greater than 500 bytes

4. Which READ statement(s) below are invalid?

a. READ EMPLOYEE-FILE.

b. READ EMPLOYEE-FILE KEY IS EMPLOYEE-SURNAME AT END...

Copyright © Micro Focus 2015-2016. All rights reserved.

12 Using Indexed Files

147

c. READ EMPLOYEE-FILE NEXT RECORD AT END...

d. READ EMPLOYEE-FILE INVALID KEY...

5. If you READ NEXT on an alternate key, there is no way to detect, in the READ, that the

alternate key has changed?

a. TRUE

b. FALSE

6. The syntax to READ the record before the current one in an indexed file is:

a. READ FILE-NAME LAST

b. READ FILE-NAME PREVIOUS

c. READ RECORD-NAME LAST

d. READ RECORD-NAME PREVIOUS

Copyright © Micro Focus 2015-2016. All rights reserved.

13 Modular Programming

148

13 Modular Programming

Introduction
Modular programming is the name given to the procedure of tackling a programming problem by

writing not one, but two or more programs, dividing the coding tasks between the separate

programs.

Different programs can communicate with each other, passing data as parameters.

Modular programming is very common, for the following reasons:

 The programming task may be large. If so, dividing it up into discrete tasks (subroutines or

modules) means that different people can be working simultaneously.

 You may want to separate the business logic of a program from the 'nuts and bolts' of how

the data is retrieved or written.

 Several programs may need common code, for example tax calculation. That code can be

written once, and ‘called’ from any program that needs it.

For example, processing the payroll of a company’s staff involves calculating different rates of

tax and benefits.

 The program can be divided up logically if each discrete task is allocated to a separate

program, often called a subroutine, subprogram or module. Different people can write each

program separately, if necessary. If a task requires change, then only that module requires

editing and recompiling.

 It might be advisable to keep certain actions away from the main program.

Let’s imagine that you designed a program that accesses and updates employee records on an

indexed file.

 However, you later decide to access a database. If all the file access code is contained in a

subprogram, then that could be replaced in the future with code to access a database — the

code in the main program would not require changes.

 Instead, the subprogram can be “told” what to do — for example, read a record or update a

record — by passing down a value, or parameter.

 The data fields in a record can be passed back similarly. We can also pass back file status

values, so that the top-level program, as it is called, will “know” what happened in the

module.

Several programs might require the same functionality. For example, it would be useful if some

“common code” carried out end-of-year tax calculations. Rather than writing the same code

many times, create a module that is called from many different programs.

The code becomes “common code.” Again, the appropriate data values can be passed back and

forth as parameters.

Copyright © Micro Focus 2015-2016. All rights reserved.

13 Modular Programming

149

In this module we shall discuss how to design and implement modular programming. In practice,

modular programming makes program design easier, which is always good!

You saw in one of the examples in the previous module where there was a screen i-o program which

“called” a file i-o program. This is a very common split of processing.

Module Objectives
By the end of this module you will be able to:

 Describe the basic concepts of modular programming

 Explain why modular programming is used

 List the Data Division entries

 Use the CALL and CANCEL verbs

 Pass parameters between modules

The CALL statement
The way in which one program invokes another program is through the CALL statement. E.g.

In this example the TOPPROG calls the SUBPROG. (SUBPROG must of course exist)

The SUBPROG carries out it processing and then returns to the calling program TOPPROG using the

EXIT PROGRAM syntax (not STOP RUN).

When you call a sub-program, the name you use in the CALL statement is determined differently in

different environments. For example on a Mainframe the name of the program you call is the

PROGRAM-ID of the program. In Micro Focus COBOL, the name of the program you call is the name

of the program file on disk. For that reason, it is strongly recommended that you save the program to

disk with the same name as the PROGRAM-ID to avoid confusion.

Call using a data name

The above example showed TOPPROG calling the SUBPROG by calling a literal value. You can, of

course, Call using a data name as shown below:

Copyright © Micro Focus 2015-2016. All rights reserved.

13 Modular Programming

150

Call Nesting

PROG1 can CALL PROG2, which can CALL PROG3, and so on.

The level of call nesting will depend on the amount of stack space available.

Of course, this second level call is free to use any data items it wishes in the call, including its own

linkage section items.

Recursion (e.g. PROG1 calling PROG1) is allowed, but is only useful in particular circumstances. It is

very rarely in regular COBOL programs – but is used very commonly in Object Oriented Cobol as we

will see later.

Passing parameters
A call can pass parameters to a called program. The called program can alter these values, which

then get passed back on the EXIT PROGRAM.

For this to work, the called program must have a LINKAGE SECTION. For this to work, the called

program must have a LINKAGE SECTION. This LINKAGE SECTION is used as a “holding“ place for the

data that is passed from the calling program. The names of the data items in the called program and

the calling program need not be the same. But they must be the same formats. We often prefix the

Copyright © Micro Focus 2015-2016. All rights reserved.

13 Modular Programming

151

linkage section versions with something like LS-, just to help us remember that it is linkage data we

are referencing in our program.

The CANCEL Verb
After a program has called another program there is the option of cancelling the called program. This

is mainly used in a PC (or Unix) environment. This will have the effect of freeing up memory that the

called program was using. It does have the adverse effect that next time the program is called it will

be loaded from disk again (with a slight time overhead) and any data values, that the called program

was retaining, will be re-initialized. The decision to cancel is down to performance issues.

The syntax is very simple:

 CANCEL “SUBPROG”

Exercise 1

Switch to the workspace 13_01_Modular_Programming.

This project consists of 2 programs:

 Program12 – this handles access to a sequential file and then calls Program12a

 Program12a – this handles an indexed file and updates this file according to the data that is

passed to it by Program12.

The syntax in Program12 which is relevant is:

 01 WS-EMPLOYEE-REC.
 03 EMPLOYEE-NO PIC X(8).
 03 EMPLOYEE-INITS PIC X(4).
 03 EMPLOYEE-SURNAME PIC X(16).
 03 EMPLOYEE-SALARY PIC 9(6)V99.
 03 EMPLOYEE-ADDRESS PIC X(40).
 03 EMPLOYEE-DEPT PIC X(10).
 01 ws-action pic X.
 01 ws-status pic xx.

 call "program12a"
 using ws-employee-rec
 ws-action
 ws-status

The syntax in Program12a which is relevant is:

 linkage section .
 01 ls-EMPLOYEE-REC .
 03 ls-EMPLOYEE-NO PIC X(8) .
 03 ls-EMPLOYEE-INITS PIC X(4) .
 03 ls-EMPLOYEE-SURNAME PIC X(16) .
 03 ls-EMPLOYEE-SALARY PIC 9(6)V99 .
 03 ls-EMPLOYEE-ADDRESS PIC X(40) .
 03 ls-EMPLOYEE-DEPT PIC X(10) .
 01 ls-action pic x .
 01 ls-status pic xx .

 procedure division using ls-employee-rec
 ls-action
 ls-status.

Copyright © Micro Focus 2015-2016. All rights reserved.

13 Modular Programming

152

The calling program passes references to the data items contained in its own WORKING-STORAGE

section.

The called program defines this data in its own LINKAGE section.

These two definitions are effectively referencing the same data in the original calling program. You

will see that the CALL and the PROCEDURE DIVISION using need to have the parameters in the same

order.

So study these programs and debug the code to see how the call and exit program are working.

Using a return code

As soon as control of a program is transferred from one program to another, there is a risk that the

top level program will not 'know' if anything has gone wrong in the called program.

Using a 'return code' is very common.

The common way to indicate success is to use a numeric field to return a value of 0.

Exercise 2

This example is similar to the one you looked at in the previous module.

Switch to the workspace 13_02_FileInquiry

Study the code in here and debug the programs.

Suitable patron numbers to use are 101 thru 125.

Exercise 3

Switch to the workspace 13_02_Circle

It consists of 2 programs:

 Circle-IO which handles the use interface which requests the radius if a circle and then calls

the subprogram.

 Circle-calculations which very simply calculates the area and circumference of a circle

Study the behaviour of these 2 programs by first executing and then by debugging.

You will notice that the call to the subprogram is:

 Call "circle-calculations" using
 radius
 circumference
 circle-area

Module Summary
Now, at the end of this module you are able to:

 Describe the basic concepts of modular programming

 Explain why modular programming is used

 List the Data Division entries

Copyright © Micro Focus 2015-2016. All rights reserved.

13 Modular Programming

153

 Use the CALL and CANCEL verbs

 Pass parameters between modules

Quick Quiz
1. The CALL to a subprogram must pass parameters to the subprogram

a. TRUE

b. FALSE

2. If parameters are passed, the called subprogram needs a LINKAGE section to receive the

parameters

a. TRUE

b. FALSE

3. A calling program needs a LINKAGE section to send the parameters

a. TRUE

b. FALSE

4. The CALL to a subprogram must called using a literal.

a. TRUE

b. FALSE

5. The normal use of a return code value would expect a successful return code value to be:

a. 0

b. 1

c. 9

6. If a called program is itself also a calling program, then it must use the same parameters that

it was called with?

a. TRUE

b. FALSE

Copyright © Micro Focus 2015-2016. All rights reserved.

14 Screen Handling

154

14 Screen Handling

Introduction
Standard COBOL offers little in the use of displaying and accepting from the screen.

For that reason, most COBOL compiler writers have provided additions to the COBOL syntax which

allows a better ability to handle a character screen.

We will look briefly at some of the features which Microfocus has provided.

Module Objectives
By the end of this module you will be familiar with:

 Basic accept and display statements

 Some Microfocus extensions to accept and display

 Future directions

Basic Display and Accept
Display

Standard COBOL provides the following DISPLAY syntax:

 DISPLAY data-name
 DISPLAY 'literal'

These can be combined together as shown in this example:

 DISPLAY 'Hello '
 USER-NAME
 ' I see you are '
 WS-AGE
 ' years old'

The DISPLAY displays on the next line of the screen.

Accept

Standard COBOL provides the following ACCEPT syntax:

 ACCEPT data-name

The ACCEPT requires user input from the next line of the screen.

Enhancements to Display and Accept
As stated above, most COBOL vendors have added their own syntax extensions to support better

display and accept usage.

Microfocus has added a variety of additional features, some of which are illustrated below:

Copyright © Micro Focus 2015-2016. All rights reserved.

14 Screen Handling

155

Display:

 To clear the screen:
 DISPLAY SPACES UPON CRT

 To display a data item at row 11, column 8
 DISPLAY DATA-NAME AT 1108

or
 DISPLAY DATA-NAME AT LINE 11 COLUMN 8

or
 DISPLAY DATA-NAME AT LINE WS-LINE-NO COLUMN WS-COL-NO

 To display a data item at row 11, column 8 in high brightness

 DISPLAY DATA-NAME AT 1108 WITH HIGHLIGHT

Accept:

 To accept a data item at row 11, column 8
 ACCEPT DATA-NAME AT 1108

or
 ACCEPT DATA-NAME AT LINE 11 COLUMN 8

or
 ACCEPT DATA-NAME AT LINE WS-LINE-NO COLUMN WS-COL-NO

 To display a data item at row 11, column 8 in high brightness
 ACCEPT DATA-NAME AT 1108 WITH HIGHLIGHT

There are a number of other variations, handling color, password protection, etc, which we will not

describe here. (You can find extensive details in the Microfocus help system).

In addition many COBOL suppliers have provided very advanced screen handling. Microfocus has

provided a new data division entry name SCREEN Section along with the advanced Dialog System.

This also shows how you can get function key information from COBOL.

We are not dwelling on these at this time, since we will shortly be describing the ways in which we

can produce Windows forms and Web forms using COBOL integration with Microsoft .NET.

Exercise – Screen section syntax
If you wish, you can see an example of the use of SCREEN section by switching the workspace to

14_01_Screen_Section_use.

You should first look at this application in run mode.

 See how the tab and back tab keys are working

 See how the F1 key works

 See how the <CR> key works

 See how the Escape key works

Then debug your way through the code. You will see that how this example uses screen section

syntax and uses of Function keys. This is NOT standard COBOL; it is Microfocus extensions to COBOL.

Copyright © Micro Focus 2015-2016. All rights reserved.

14 Screen Handling

156

Module Summary
Now at the end of this module you will be familiar with:

 Basic accept and display statements

 Some Microfocus extensions to accept and display

 Future directions

Quick Quiz
1. Standard COBOL provides the ability to display and accept from the screen?

a. TRUE

b. FALSE

2. Displaying and accepting from the screen at predefined places on the screen are an

extension to COBOL

a. TRUE

b. FALSE

3. COBOL providers have come up with their own display and accept syntax

a. TRUE

b. FALSE

Copyright © Micro Focus 2015-2016. All rights reserved.

15 Database use

157

15 Database Use

Introduction
Up to now we have been accessing data through sequential files and indexed files.

COBOL, of course, fully supports access to relational databases such as:

 SQL Server

 DB2

 Oracle

 Any database that is supplied with an ODBC Driver

The syntax used in COBOL to access a relational data base is name Embedded Structured Query
Language (or ESQL).

It is not intended to be an exhaustive coverage of all the ESQL syntax, but just an illustration of the

syntax involved.

Module Objectives
At the end of this module you will have an outline understanding of the way in which COBOL can

handle access to a relational database.

Database connection
The mechanism you use to connect to a database, through ODBC, is almost the same for all

databases. All that is required is for the database provider to supply an ODBC module and for your

module to be registered.

Sample database

For the purpose of this training class we will show the access to a simple Microsoft Access data base,

named library. The principles used here are exactly the same for all relational databases.

This sample database contains 2 tables Book and Patron

The Book table contains the following fields:

Where BookID is the table’s key

Copyright © Micro Focus 2015-2016. All rights reserved.

15 Database use

158

The Patron table contains the following fields:

Where PatronNumber is the table’s key

The tables are joined through Book.PatronNumber and Patron.PatronNumber

Viewing the database

The database itself is Library.mdb and can be found at C:\COBOLClass_Eclipse\DataFiles. If you

have Microsoft Access installed on your PC you can view this database by double clicking on

C:\COBOLClass_Eclpise\DataFiles\Library.mdb.

Copyright © Micro Focus 2015-2016. All rights reserved.

15 Database use

159

You do not need to have Microsoft Access installed on your PC in order to access this data with

COBOL.

Registering the database with ODBC

The mechanism we will be using to access this database is through ODBC, so we need to register this

database correctly. Take the following steps:

1. From the Windows Start menu select All Programs, Micro Focus Visual COBOL, Data Tools,
Data Connections, ODBC Data Source Administration (32bit)

2. This will bring up the following window:

Copyright © Micro Focus 2015-2016. All rights reserved.

15 Database use

160

3. Select the System DSN tab and click Add.

Copyright © Micro Focus 2015-2016. All rights reserved.

15 Database use

161

4. Select the entry for Microsoft Access Driver (*.mdb) and click Finish

5. Enter the Data Source name to be Library and select the Database
C:\COBOLClass_Eclipse\DataFiles\Library.mdb.

Copyright © Micro Focus 2015-2016. All rights reserved.

15 Database use

162

6. Click OK to finish.

7. Press OK once more to close the ODBC data source administrator.
The connection is now a Windows ODBC data source connection named Library, pointing to
the Access database.

Accessing the database from COBOL

A project has been provided for you to illustrate reading this database. The workspace to use is

C:\COBOLClass_Eclipse\Projects\15_01_SQLProject.

Copyright © Micro Focus 2015-2016. All rights reserved.

15 Database use

163

COBOL program

There is one COBOL program which reads the 2 tables in the database using the Patron number as a

link. It reads the tables and orders the results by BookAuthor.

There are 2 copy files – one for each table.

The cursor name “CSR3” in our example is just an automatically generated name, which is the next in

the sequence of cursor names. You can rename this to anything you want.

Copyright © Micro Focus 2015-2016. All rights reserved.

15 Database use

164

Book copy file:

Copyright © Micro Focus 2015-2016. All rights reserved.

15 Database use

165

Patron Copy file

Processing details

The COBOL program uses the Cursor declaration, shown below, to fetch and display results on the

screen, using the procedure division code:

Copyright © Micro Focus 2015-2016. All rights reserved.

15 Database use

166

Running the application

To execute the program, press F5.

This will give the results shown below:

You will see that it is ordered by BookAuthor as required.

Debugging the application

To debug the program, press F11. This behaves in exactly the same way as debugging any of the

programs you have seen so far.

Although this sample program uses database access, it is completely OK to mix in regular COBOL file

access in the same program.

Copyright © Micro Focus 2015-2016. All rights reserved.

15 Database use

167

Step through the code with F11, as you have done before to see the code being executed.

Module Summary
Now you are at the end of this module you will have an outline understanding of the way in which

COBOL can handle access to a relational database.

Exercise
If you have not already done so, load the solution SQLProject.sln from

\COBOLClass_Eclipse\Projects\15_01_SQLProject

Examine the code inside this program and debug the code to get a feel for the way the syntax is

working.

Quick Quiz
1. Relational database access is the same as indexed file access

a. TRUE

b. FALSE

2. In order to use relational database access you need to have a copy file for each of the

database tables you are using.

a. TRUE

b. FALSE

3. Copy files relating to the tables include both COBOL data items and database items

c. TRUE

d. FALSE

4. You cannot mix database access and regular COBOL file access in the same program.

e. TRUE

f. FALSE

Copyright © Micro Focus 2015-2016. All rights reserved.

16 Object Oriented COBOL

168

16 Object Oriented COBOL

The next few modules deal with Object Oriented COBOL and the JVM environment.

You may choose at this point, to follow on with these modules at a later date.

Copyright © Micro Focus 2015-2016. All rights reserved.

16 Object Oriented COBOL

169

Introduction
This chapter introduces you to Object Oriented syntax in Visual COBOL through a series of evolving

solutions.

The purpose of this chapter is to give you a high level overview of using Visual COBOL to code and

debug Object COBOL programs. It is not the intention of this chapter to provide you with an

exhaustive list of all the features and syntax of Object COBOL. Rather it introduces you to the main

concepts and practices. Later, as you explore some of the extensive examples of Visual COBOL which

are provided with the Micro Focus product, you should be aware of all the concepts behind the

details.

Module Objectives
At the end of this module you will be familiar with:

 Coding Classes using Visual COBOL.

 Creating Class and Instance methods.

 Coding and debugging a program using a class and instance.

Program versus Class
The first thing to be familiar with is the difference between a Program and a Class.

The diagrams below show the structure of typical procedural COBOL program and the structure of

an Object COBOL class.

Most of the restrictions that traditional COBOL programs have is not the case when considering a

Class, as you will see.

Quick Start Scenario

COBOL's object-oriented features, as incorporated into Visual COBOL, permit COBOL to function in

the object world of other languages. To use these capabilities you need to become familiar with the

new object-oriented syntax added to COBOL.

There is a very simple application, the circle example. While simple, it gives you important concepts

that you will be employing when working with COBOL in the .NET environment.

Class Structure

Copyright © Micro Focus 2015-2016. All rights reserved.

16 Object Oriented COBOL

170

“Static method definition”

If the word “static” is used against a method then that is a Class Method.

“Object instance method definition”

If the word “static” is NOT used against a method then that is an Object Instance Method. An

instance method is a method which applies to an object instance. Object instances, as we will see

later are instantiated by a class.

NOTE: in this example, there is no need for the words “data division” or “working-storage section”

Note also that Static methods and Instance methods do not need to come in any particular order.

However it is recommended, for clarity, that they are kept apart. E.g. Static methods first, Instance

methods second.

Evolving demonstrations
There now follows a series of evolving demonstrations/exercises where Object COBOL syntax is

used.

This is not shown as an example of what you need to do in practice, but rather demonstrates the

structure and syntax of Object COBOL programs in a series of progressions.

If you switch to the workspace 16_01_OOCircles there are a number of OO projects:

Copyright © Micro Focus 2015-2016. All rights reserved.

16 Object Oriented COBOL

171

You will look at each of these projects in turn as you progress through this module.

What you need to do it to look at the code in each of these cases and then execute the code in

debug mode to see how the various lines of code are set up and executed.

The sections shown below give you points to look out for. Take your time doing this in order to

understand what is happening.

Exercise 1

The first thing to do is to look at a solution we already saw earlier in the course. This is NOT an

example of Object Orientation but simply shows a procedural example that we will evolve into

Object Oriented.

So, open the project OOCircleA

This solution contains 2 programs:

It consists of 2 programs:

 Circle-IO which handles the use interface which requests the radius if a circle and then calls

the subprogram.

 Circle-calculations which very simply calculates the area and circumference of a circle

The circle-IO program is very simple COBOL code which just displays some textual information and

then asks you to enter a value for the radius of a circle. It then calls the circle-calculations program,

which calculates the area and circumference of the circle and passes these values back to the circle-

IO program. The circle-IO program then displays these results on the screen and asks for the next

radius. (entering a 0 radius terminates the program)

Study the behaviour of these 2 programs by first executing and then by debugging.

You will notice that the call to the subprogram is:

 Call "circle-calculations" using
 radius
 circumference
 circle-area

The circle-calculations program contains:

 Identification Division.
 Program-id. circle-calculations.

 Data Division.
 Linkage Section.
 01 ls-radius pic 99.
 01 ls-circumference pic 999v9.
 01 ls-area pic 99999v9.

 Procedure division using ls-radius
 ls-circumference
 ls-area.
 Compute ls-circumference = 6.28 * ls-radius
 Compute ls-area = 3.14 * ls-radius * ls-radius

Copyright © Micro Focus 2015-2016. All rights reserved.

16 Object Oriented COBOL

172

 exit program
 .

Notice that the call parameter order in the calling program matches the parameter order in the

called program

Exercise 2

This next project changes the Circle-calculations program into an Object Oriented Class.

So, open the project OOCircleC

First of all execute this code to see that it is behaving in the same way that the previous project

behaved.

Note1: In order to execute OO code inside Eclipse you are using the Java Virtual Machine (JVM) so to

execute circle-io you need to right click on the program and select Run As/COBOL JVM Application.

Note2: You will see, that in the case of this OO project, the “display” and “accept” do not happen in

a regular DOS window, but at the Console at the foot of the Eclipse Windows

Now let’s look at the code in circle-IO.

Inside the circle-IO program you will see the following in procedure division:

 Invoke type CircleCalculations::CalculateArea(radius) returning circle-area
 set circumference to type CircleCalculations::CalculateCircumference(radius)

The “Invoke” invokes a class method inside the circle-IO class. We know it is a class method that we
are trying to invoke the word “type” in the INVOKE indicates that the method is a class method. We,
of course, can only know it is a class method by looking in the class program itself.

So the way we can read the statement

Invoke type CircleCalculations::CalculateArea(radius)
 returning circle-area

is:

 Invoke the class method CalculateArea inside the Class CircleCalculations

 Pass the value radius to that method and receive the value circle-area back from that

method

The second statement set circumference . . . is exactly the same, but using a different syntax. If a

method returns just a single value or object reference, then you would probably choose to use this

set syntax.

So the following 2 statements are identical in behaviour:

Invoke type CircleCalculations::CalculateArea(radius) returning circle-area

Set circle-area to type CircleCalculations::CalculateArea(radius)

If a method returns more than 1 value or object reference then you would need to use the Invoke

Syntax.

Copyright © Micro Focus 2015-2016. All rights reserved.

16 Object Oriented COBOL

173

Now let’s look at the code in circle-calculations.

Class-ID. CircleCalculations.
*>--
Method-ID. CalculateArea static.
Linkage Section.
01 ls-radius pic 99.
01 ls-area pic 99999v9.
Procedure Division Using by value ls-radius
 Returning ls-area.
 Compute ls-area = 3.14 * ls-radius * ls-radius
 Exit Method
 .
End Method CalculateArea.
*>--
Method-ID. CalculateCircumference static.
Linkage Section.
 01 ls-radius pic 99.
 01 ls-circumference pic 99999v9.
Procedure Division Using by value ls-radius
 Returning ls-circumference.
 Compute ls-circumference = 2 * 3.14 * ls-radius
 Exit Method
 .
End Method CalculateCircumference.
*>--
END CLASS CircleCalculations.

1. You will see that the Class begins with the Class-ID statement and ends with the END CLASS

statement.

2. Inside this class there are 2 methods, each beginning with a Method-ID and ending with an

End Method

3. The word static alongside a method indicates that this is a class method. If the word static is

missing then the method is an object instance method.

4. Inside the method is the normal COBOL syntax you would expect to find, except the end of

the method has the Exit Method syntax. This is the equivalent of Exit Program in procedural

code. The good news is that you do not even need to use this. The End Method is sufficient

for the run time system to know that it should return to whatever invoked the method.

Now debug your way through the code to ensure that you understand what is happening.

Note: In the case of Object Oriented programs, since JVM is being used, you will need to set a

breakpoint at the start of the program so that debugging will be seen.

Exercise 3

This next solution uses the Circle-calculations Class, but in this case, the methods have become

Object Instance methods.

So, load the project OOCircleF

First of all execute this project to see that it is behaving in the same way that the previous project

behaved.

Now let’s look at the code in circle-IO.

Copyright © Micro Focus 2015-2016. All rights reserved.

16 Object Oriented COBOL

174

Inside the circle-IO program you will see the following in data division.

 01 circleObject type CircleCalculations.

This is declaring a data item circleObject. It does not have a picture clause. It is declared to be an

object instance reference to an object type CircleCalculations.

In procedure division, this object instance must be created. The object needs to be created by the

class, using the “new” method. The syntax to create this object is:

Invoke type CircleCalculations::New() returning circleObject

From this point on, it is not the class methods which are invoked, but the object instance methods:

 Invoke circleObject::SetRadius(radius)
 Invoke circleObject::Calculate()

We know these are object instance methods in 2 ways:

 We are not using the word “type” in the invoke. (If we did we would get a compiler error).

 We are referring to the object Instance circleObject, not the class CircleCalculations.

Now let’s look at some of the code in circle-calculations.

Identification Division.
Class-id. CircleCalculations.
Data Division.
Working-Storage Section.
01 radius pic 99.
01 circle-area pic 99999v9.
01 circumference pic 999v9.

The first thing to notice is that the Class has a data division.

The contents of this data division are the Object Instance data. Data defined here can be either

Object Instance data or Class data. If it is class data, it will have the word “Static” alongside it.

Further down the code you will find several methods e.g.

*>--
Method-ID. SetRadius.
*>--
Linkage Section.
01 ls-radius pic 99.
Procedure Division Using by value ls-radius.
 Move ls-radius to radius
 .
End Method SetRadius.
*>--
Method-ID. Calculate.
*>--
Procedure Division.
 Compute Circle-area = 3.14 * radius * radius
 Compute circumference = 6.28 * radius
 .
End Method Calculate.

Copyright © Micro Focus 2015-2016. All rights reserved.

16 Object Oriented COBOL

175

All these methods are object instance methods, since there is no “static” defined alongside the

method.

The first instance method SetRadius, simply takes the ls-radius that is passed to it and places it into

the object instance data item radius.

The method Calculate does the required calculations and places the results into the object instance

data items. It does not return anything to the invoking program.

To get these values back to the invoking program, extra instance methods are defined:

Method-ID. GetCircumference.
Linkage Section.
01 ls-circumference pic 999v9.
Procedure Division Returning ls-circumference.
 Move circumference to ls-circumference
 .
End Method GetCircumference.

Method-ID. GetCircleArea.
Linkage Section.
01 ls-circle-area pic 99999v9.
Procedure Division Returning ls-circle-area.
 Move circle-area to ls-circle-area
 .
End Method GetCircleArea.

These methods get the data values from the instance data and pass them back to the invoking

program. This sounds very clumsy! Just wait a moment and we will see how we can make this much,

much easier.

For now, let’s see how the circle-IO program behaves

 set circleObject to type CircleCalculations::New()
 Invoke circleObject::SetRadius(radius)
 Invoke circleObject::Calculate()

In this:

 An object instance circleObject is created

 The radius is then passed to the object instance using the SetRadius method

 The object instance is then asked to use its Calculate method

But how do we get these values back to Circle-IO?

This is done with the 2 statements:

 Move circleObject::GetCircumference() to edit-circumference
 Move circleObject::GetCircleArea() to edit-circle-area

Now debug through the code and watch how the application is behaving.

Copyright © Micro Focus 2015-2016. All rights reserved.

16 Object Oriented COBOL

176

Exercise 4

We have gone from a fairly simple procedural program to what appears to be a more complex

Object Oriented solution. We have done this to gain an understanding of the way in which OO

works.

Let’s now make life simpler.

Look at the project OOCircleG

First of all execute this project to see that it is behaving in the same way that the previous projects

behaved.

Let’s first look at the CircleCalculations program

Identification Division.
Class-id. CircleCalculations.
Working-Storage Section.
01 Radius pic 99 property.
01 CircleArea pic 99999v9 property.
01 Circumference pic 999v9 property.
Method-ID. Calculate.
Procedure Division.
 Compute CircleArea = 3.14 * radius * radius
 Compute Circumference = 6.28 * radius
 .
End Method Calculate.
End Class CircleCalculations.

This looks like a very simple program. It has just one object instance method Calculate.

It also has 3 data items which are object instance data items. However there is the word property

alongside each data item.

What this means is that if an object instance data item has the word property alongside it, then

there are hidden default get and set methods for that data item. They have the singular function of

receiving or returning object instance data values.

Let’s look inside the circle-IO program to see how this is used

To set the radius instance data value we use:

 Move ip-radius to circleObject::Radius

To do the calculation we use:

 Invoke circleObject::Calculate

To get the instance values back we use:

 Move circleObject::Circumference to circumference

 Move circleObject::CircleArea to circle-area

Now debug through the code and watch how the application is behaving.

Copyright © Micro Focus 2015-2016. All rights reserved.

16 Object Oriented COBOL

177

The implicit get and set methods are provided by using the property clause alongside the instance

data items:

01 Radius pic 99 property.
01 CircleArea pic 99999v9 property.
01 Circumference pic 999v9 property.

However we could have applied 2 variations to this property clause:

01 Radius pic 99 property no get.
01 CircleArea pic 99999v9 property no set.
01 Circumference pic 999v9 property no set.

The no get clause means that that data item does not have an implicit get method.

The no set clause means that that data item does not have an implicit set method.

So in the example above:

 the radius can be “set” but cannot be “got”

 the CircleArea and CircleCircumference can be “got” but not “set”

Exercise 5

Finally look at the project OOCircleJ.

First of all execute the application. It will ask for a radius and not give any result. It will ask for

another radius. Enter a few radius values and finally enter 0.

Multiple Object Instances have been created.

This will then show you the values in each of the multiple objects that it created!

Finally debug this code and see how it is working.

Module Summary
Now at the end of this module you should be familiar with:

 Coding Classes using Visual COBOL.

 Creating Class and Instance methods.

 Coding and debugging a program using a class and instance.

You should now have a high level overview of using Visual Studio to code and debug Object COBOL

programs.

 It was not the intention of this chapter to provide you with an exhaustive list of all the

features and syntax of Object COBOL. Rather it introduced you to the main concepts and

practices.

Quick Quiz
1. In a class program do you distinguish class instance data from object instance data?

a. You add the word “type” after the data definition.

b. You add the word “static” after the data definition.

Copyright © Micro Focus 2015-2016. All rights reserved.

16 Object Oriented COBOL

178

c. It is not possible to distinguish class data from object data

2. In a class program do you distinguish a class method from object instance method?

a. You add the word “type” as part of the method definition.

b. You add the word “static” as part of the method definition.

c. It is not possible to distinguish class methods from object methods.

3. When invoking a method how do you ensure that it is a class method you are invoking?

a. You add the word “type” as part of the method invocation.

b. You add the word “static” as part of the method invocation.

c. It is not possible to distinguish class methods invocation from object methods

invocation.

4. When invoking a method how do you ensure that it is an object instance method you are

invoking?

a. You add the word “type” as part of the method invocation.

b. You add the word “static” as part of the method invocation.

c. You do not add anything to the invocation

d. It is not possible to distinguish class methods invocation from object methods

invocation.

5. How do you indicate that you want method Calculate in the object MyObject?

a. MyObject.Calculate

b. MyObject:Calculate

c. MyObject::Calculate

d. Calculate in MyObject

6. How do you create a new instance object MyObject from the class MyClass?

a. Invoke MyClass::New() giving MyObject

b. Invoke type MyObject::New() giving MyClass

c. set MyObject to MyClass::New()

d. set MyObject to type MyClass::New()

Copyright © Micro Focus 2015-2016. All rights reserved.

16 Further JVM Features

178

17 Further JVM Features

Introduction
This module provides further example of COBOL in the JVM environment

Module Objectives
A workspace has been provided which contains a number of JVM projects.

These projects are not discussed in detail.

It is up to you to decide which of these projects are of interest to you.

Project detail
The workspace you should switch to is 17_01_JVM_Projects.

These projects are taken from the examples supplied with the Visual COBOL product.

The names of the projects should be self-explanatory describing the purpose of the project.

Feel free to explore these samples as you see fit.

Copyright © Micro Focus 2015-2016. All rights reserved.

Modern COBOL Conclusions

179

18 Course Conclusions
This course has taken you through the structures and features of the COBOL programming language.

It started with “traditional” COBOL and then moved through the implementation of Object Oriented

COBOL in the 1990s and then on to more recent developments; providing fully featured JVM COBOL

using all the powers of the Java Virtual Macine framework.

Course Follow-on
There are many samples provided by Microfocus, which you may want to examine. These samples

can be found from the Windows Start menu under Microfocus Visual COBOL, Samples.

When you select this you will get the Samples Browser:

Just out of interest, this Samples Browser was written using Visual COBOL.

Feel free to explore the various samples, as you require.

Course Examination
You are now ready to take the course examination, as provided by your tutor.

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

180

19 Appendix I - Managed COBOL Review

Introduction
This appendix, re-introduces you to the features of Managed COBOL; particularly those which relate

to Object Oriented COBOL.

This course has primarily been directed at the JVM environment, using Eclipse as the development

IDE. However most of what has been covered applies equally to Microsoft .NET using Visual Studio

as the development IDE. (Micro Focus supplies a version of Visual COBOL which is based around

Visual Studio and .NET).

Managed COBOL refresher
Managed COBOL is the collective term for .NET COBOL and JVM COBOL. Managed COBOL is regular

procedural COBOL with extensions to take advantage of the features of the managed frameworks.

This includes object-oriented syntax (OO) that allows access to large libraries of functionality which

you can use in your application and much more. To take full advantage of Managed COBOL, it is a

great advantage to understand object-oriented concepts.

This summation guide serves as a basic review of object-oriented programming for COBOL

developers.

Classes & Methods
At the heart of Object Oriented Programming (OOP) is the notion of a class. A class is said to

encapsulate the information about a particular thing. A class contains data associated with the entity

and operations, called methods, that allow access to and manipulation of the data. Aside from

encapsulation of data, Classes are also very useful for bridging your existing procedural programs

with managed code technologies.

Here’s a simple COBOL class:

 class-id. MyClass.

 method-id. SayHello static.

 linkage section.
 01 your-name pic x(10).
 01 your-greeting pic x(20).

 procedure division using your-name
 returning your-greeting.
 move "hello " & your-name to your-greeting
 .
 end method.
 end class.

Before we look at the details of the class, let’s see how you would invoke the single method

contained in this class.

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

181

 program-id. TestMyClass.
 working-storage section.
 01 your-name pic x(10).
 01 your-greeting pic x(20).
 procedure division.
 Move 'Scot' to your-name
 invoke type MyClass::SayHello(your-name)
 returning your-greeting
 display your-greeting
 .
 end program TestMyClass.

As you would expect, the result of this program is:

Hello Scot

In this example, you can see how a procedural COBOL program can also use object-oriented

semantics even though it is itself not a class.

These two programs can be found by loading the workspace 18_01_Simple_Class

Let’s look at the details of the class:

class-id MyClass.

MyClass is the name of the class. When you reference a class, you do so by its name much in the

same way you would reference a COBOL program.

Our class contains no data but it does have a single method named SayHello.

method-id SayHello static.

Notice there is STATIC clause associated with this method. This keyword is important in that is allows

us to call the method without creating an instance of the class (That is, we are using a Class Method).

Instances of classes are called objects which we’ll come to later.

The remainder of the method declaration should be familiar as it is identical to a procedural program

that two parameters as arguments to the program.

 Method-id. SayHello static.

 linkage section.
 01 your-name pic x(10).
 01 your-greeting pic x(20).

 procedure division using by reference your-name
 returning your-greeting.
 move "hello " & your-name to your-greeting
 .
 end method

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

182

Let’s look at the procedural program that invokes this method:

invoke type MyClass::SayHello(your-name)
 returning your-greeting

The INVOKE keyword is synonymous with CALL but is used in the context of calling a method on a

class.

The TYPE keyword allows us to specify the name of the class we are referring to.

The :: syntax allows us to refer to the specific method on the class we wish to invoke.

The using (and returning) statement allows us to pass in the parameters we need to supply to the

method, as we would if this were a CALL to a COBOL program.

Before we go deeper let’s review some more aspects of the syntax.

invoke type MyClass::SayHello(your-name)

The TYPE keyword is a new part of the COBOL language introduced with Visual COBOL and simplifies

how you reference and invoke methods.

To illustrate this, here is the equivalent program conforming to ISO syntax:

program-id. TestMyClass
repository.
class MyClass as "MyClass".

procedure division.

invoke MyClass "SayHello" using by reference "Scot"

end program.

Visual COBOL simplifies other aspects of the COBOL language, let’s look at a couple of cases in our

example:

invoke type MyClass::SayHello using(your-name)

Can become:

invoke type MyClass::SayHello(“Scot”)

If the method contained further arguments these might appear as:

invoke type MyClass::SayHello(“Scot”, 37, “Bristol Street”)

In fact, even the commas separating parameters are optional.

In future examples, we’ll use this abbreviated syntax.

The method can also be simplified as:

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

183

 method-id. SayHello static.

 procedure division using by reference your-name as string
 returning your-greeting as string.
 move "hello " & your-name to your-greeting
 .
 end method.
 end class.

Two important things have changed here:

First of all, the explicit linkage section has been removed and the linkage argument been defined in-

line with the procedure division using statement.

Secondly, the PIC X(20) argument has been replaced by a reference to string.

String is a predefined COBOL type which maps onto the Java and .Net string class. Strings contain a

variety of methods and are used to hold Unicode data of an arbitrary length. The compiler can

convert between many of the pre-defined types such as string into COBOL types such as PIC X, we’ll

look at this in more detail later on.

For future examples, we’ll adopt this convention of defining arguments inline. However, this is only

possible when we use pre-defined managed types. COBOL records still need to be defined in the

usual way.

You can see this example in use in the workspace 18_02_Simple_Class2

Objects
Our simple example so far has helped demonstrate the basic concept of a class but the value of

Object Oriented Programming (OOP) is not yet apparent. The power of OO really comes into play

when we encapsulate data within a class, provide methods that perform actions on that data and

then create instances of the class for use at runtime.

Creating an instance of a class results in the creation of an object. Each object maintains a separate

set of data items that the methods act upon.

You can create many instances of a class, so therefore you can have many objects each with data

distinct from other objects in the system.

For example, if we considered the kind of data we might need in a simple bank account class, we

might think of such things as account number, balance and some way in which we could store

transactions. At runtime, we could conceivably create a unique object for each customer we were

dealing with where each object maintains distinct data from other customers at our bank.

In our first example, we did not define any data in our class and we didn’t create an object at all but

we were still able to invoke the method. This was due to the STATIC clause on the method which can

call be applied to data.

method-id SayHello static.

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

184

We can invoke static methods directly of the class itself without creating an instance of the class.

Static methods and static data can be useful at times but there is only ever one instance of the static

data. Static methods can only operate on static data.

Creating an instance of a class

Let’s change our class a little and look at how we would create an object instance.

 class-id. MyClass.
 working-storage section.
 01 your-name pic x(10) property.

 method-id. SayHello.

 procedure division returning your-greeting as string.
 move "hello " & your-name to your-greeting
 .
 end method.
 end class.

The static clause has been removed from the method.
The method no longer accepts an argument.
The class now has some data in the working-storage section.

To invoke the SayHello method, we now do this using an object rather than the class. Here’s how we

create that instance:

 program-id. TestMyClass.
 01 your-greeting pic x(20).
 01 an-obj type MyClass.
 procedure division.
 set an-obj to new MyClass
 move 'Scot' to an-obj::your-name
 invoke an-obj::SayHello returning your-greeting
 display your-greeting
 stop "Press <CR> to terminate"

 This is the declaration of the object, more formally known as an object reference.

01 an-obj type MyClass.

If we were to try and invoke the SayHello method on this class at this point, we would get a runtime

error. That’s because the object has not yet been created.

 set an-obj to new MyClass

This is the line that creates the object. The keyword NEW is responsible for creating our object. NEW

requires we specify the type of the object we want to create. This may seem strange as we have

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

185

already said what type our object is when we declared it but later on we’ll see that an object can be

declared as one type but at runtime, reference a different type.

The other thing we have done here is to set the value of my-name directly in the object instance

data using:

 move 'Scot' to an-obj::your-name

This is possible since the property clause has been added to the object instance data in the class.

 01 your-name pic x(10) property.

This can be found in the workspace 18_03_Simple_object.

The SET statement is frequently used in OOP and is synonymous with MOVE but applies to objects.

It is possible to declare another object reference and assign it the value of an-obj:

 set another-obj to an-obj

In this case, another-obj now contains a reference to an-obj. It is important to note that whilst we

have 2 object references, there is actually only 1 instance of type MyClass at this point and both

another-obj and an-obj refer to it. If we invoked the SayHello method on an-obj and another-

object, they would operate against the same data in the working-storage section.

The only way to create an entirely new object is to use the new keyword.

set another-obj to new MyClass

Our class has an issue at the moment. We have had to provide the name ‘Scot’ in a separate call to

the object.

There are several ways we can fix this, one way is during the creation of the object which is

otherwise known as construction. Right now, our class does not do anything during construction but

we can do so if we create a method named new.

Constructors

method-id New.

procedure division using a-name as string.

Set your-name to a-name
end method.

Whenever an object is created, the runtime system automatically invokes the New method on the
class. If you didn’t code one, the compiler automatically creates one for you.

In our method above, not only have we defined a constructor but we have also specified that it take
a parameter. Given this, we need to change our code that creates the object:

 set an-obj to new MyClass(“Scot”)

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

186

By the way, this code could also have been written as:

 set an-obj to MyClass::New(“Scot”)

This can be found in the workspace 18_04_Simple_object2.

What we have done is provide a way for our object to be initialized and ensured that we get an

argument passed to the constructor any time an object of type MyClass is created.

However, it is possible to have multiple versions of the new method, each corresponding to different

arguments that can be passed in when the object is created. This is called Method overloading

because the method name remains the same but different arguments are accepted by each method.

We can also use this ability of Method overloading to re-instate the so-called default constructor

otherwise known as the parameterless constructor. To do so, we just code a new New method.

method-id New.

procedure division.
 move all 'x' to your-name
end method.

This has allowed us to create the object by either supplying a parameter or using the default

constructor which takes no arguments but still allows us to initialize our working-storage data.

Recap
So far we’ve seen how you can create a class with static methods and instance methods declare

data, initialize our data using by defining a constructor and we’ve also looked at method

overloading. We’ve also seen how you create an instance of a class and invoke a method on it.

If you have Visual COBOL installed, now would be a good time to either type this code yourself and

step through in the debugger or to load an examine the 4 solutions already provided.

To do this, either create a JVM COBOL project in Eclipse or a managed COBOL console application in

Visual Studio.

Properties
We already saw briefly how the property clause allows us to access object instance data directly.

Let’s look some more at this.

Our class has some data associated with it, a string called your-name. This data is not, by default,

accessible directly by the program using the class just as the working-storage of one program is not

accessible to another program.

Properties allow you to expose your data items to the user of your class.

Currently, our single data item looked like this:

01 your-name pic x(10).

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

187

We can turn this data item into a property as follows:

01 your-name pic x(10) property.

As such, you can now access this property through an object reference as we saw above

display an-obj::your-name

The property keyword allows us not only to get the value of a data item but we can also set it.

set an-obj::your-name to “Scot”

However, we can prevent anyone setting the value as follows:

01 your-name pic x(10) property with no set.

The case of your types and properties is important in the .NET framework especially when working

with languages such as C#. The case of our property name is also taken from the declaration which is

currently all lower case. We can change the name and case as follows:

01 your-name pic x(10) property as “Name”.

…

display an-obj::Name

Whilst we’re looking at properties, let’s return to the subject of the STATIC clause which can also be

applied to properties:

01 dataitem pic x(10) property as “DataItem” static.

If we recall, there is only ever 1 instance of a static data item regardless of how many objects have

been created. Static data items are referenced through the class itself, we do not need an instance

to access them:

set MyClass:DataItem to “some text”

Method Visibility
The Methods we have defined so far have all been public, the default for COBOL. A public method

means that it can be invoked through the object reference. However, most classes have a need to

for methods which we don’t want to be visible outside of the class. Such methods are called private

methods:

To declare a private method:

method-id ProcessData private.

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

188

This method could not be invoked through the object reference and if you tried you’d encounter a

compiler error.

You can invoke this method from inside the class itself, say, from inside a public method.

method-id DoSomething public.
procedure division using

invoke self::ProcessData ...
end method.

Notice the use of the special keyword self. In this case, that just means invoke a method called

ProcessData which is defined in this class.

Also note that we explicitly marked this method as public in its declaration. This isn’t required as it is

the default visibility but can be a useful reminder when first starting out.

Local Data
When writing procedural COBOL programs, we only have the choice of declaring all our data in the

working-storage section. When working with classes, we still use the working-storage section for

data that is associated with the class but we can also define data that is used only by a method.

method-id ProcessData private.
Local-storage section.

procedure division.

 perform varying counter as binary-long from 1 by 1 until counter > 10

...

In this example, our method has access to a local variable called counter. The lifetime and scope of

this variable is entirely associated with the execution of this method. This field cannot be referenced

outside of the method and on every invocation of the method, counter is set to its default value.

Recap
We’ve now covered properties and method visibility and we’re probably 50% through the basics of

OOP. One thing worth pointing out here is that classes can contain all of the regular COBOL

semantics you use in procedural programming today.

For example, your class could contain a file section and methods can contain sections and

paragraphs if desired and of course, you can use standard COBOL records within working-storage

section.

Data Types
So far, our classes have used COBOL data types such as PIC X. All of the data types you use in COBOL

today are supported in .NET but are only accessible to and understood by COBOL.

.NET and JVM do not have the concept of a PIC X or group record, let alone comp-1,-2,-3,-4,-5,-6,-X

types. Whilst this is fine for your COBOL class and passing these types to other COBOL programs,

they are not understood by other languages in the .NET framework.

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

189

To help transition COBOL types to other languages, there are a set of predefined types which are

natively understood by .NET and JVM and map directly. These types are listed in the table at

http://documentation.microfocus.com/help/index.jsp?topic=%2Fcom.microfocus.eclipse.infocenter.

visualcobol.r4u2vc%2FH2TYRHTYPE01.html.

One example where all the following declarations refer to the same type:

01 val-1 binary-short.

01 val-2 pic s9(4) comp-5.

01 val-3 System.Int16

These are all different ways of saying the same thing, declaring a 16bit signed integer.

In C#, the equivalent declaration would use a type called ushort.

The point to remember here is that when working with classes, whatever data you expose to the

caller of the class, be this as arguments to a method or as a property, it’s generally best practice to

use COBOL predefined types, as shown in the table.

However, in one of our previous examples we didn’t do this, in fact we exposed a PIC X as a

property. When we do this, the COBOL compiler is actually exposing the intrinsic String type, not the

pic X field.

When a user of the property reads or sets it, the data is implicitly converted from native COBOL type

to the .NET or JVM type, in this case a String.

Declaring a group item as a property actually exposes the whole group a .NET or JVM String type.

Native numeric types, such as comp-5, are coerced to the nearest managed code equivalent.

Inheritance
Inheritance is an important part of OOP. It allows us to create a new class by extending the

functionality of an existing class. If we choose to, we can also change the behaviour of the class we

are extending.

Let’s consider a bank account example. We might imagine that accounts of any type, checking,

savings, etc. share common data such as an account number field and a balance but the process of

withdrawing money from an account might require different processing. A checking account may

need to check whether an overdraft limit is in place and a savings account, which will not have an

overdraft, will need to check other factors that affect interest earned, such as the amount of money

that can be withdrawn within a given period.

An important consideration we’ll look at later is that whatever is using these objects, let’s say the

ATM machine, should not need to determine the type of account it’s dealing with and then perform

different processing. It simply wants to perform a withdrawal action against whatever account

object it is using.

For now though, let’s just look at how we can both extend an existing class and customize

behaviour.

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

190

Here’s a simplistic account class:

Class-id BankAccount.

Working-storage section.

01 account-number 9(8) property as “AccountNumber”.

01 balance float-long.

Method-id Withdraw.

Procedure division using amount as float-long

 returning result as condition-value.

*> Process withdrawal

 …

End-method.

End-class.

This type of class, named BankAccount is often referred to as the base class as it forms the base of a

hierarchy of classes that emanate from this one.

Let’s create a new class to represent a specialization of the bank account, a savings account.

class-id SavingsAccount inherits BankAccount.

Method-id Withdraw override.

Procedure division using amount as float-long

 returning result as condition-value.

End-method.

*> Specialized process for Savings withdrawal

End-class.

Besides defining a new class for savings accounts we have used the INHERITS clause to denote we

are extending an existing class in the system. All public members (methods, properties, fields

defined as PUBLIC) of the base class become part of the new class.

As such, an object that is of the type SavingsAccount, also has properties called AccountNumber,

balance and a method named Withdraw which have been inherited from the base class

BankAccount.

Our SavingsAccount class also has a method called Withdraw which will manage the different way in

which money is withdrawn from a savings account. To indicate this is a change in behaviour to the

method in the base class, we use the OVERRIDE keyword. The significance of this keyword will

become more apparent later on.

class-id CheckingAccount inherits BankAccount.

…

Without fleshing out this new class, which also provides an override for the Withdraw method, we

now have 3 classes in our class hierarchy.

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

191

Let’s look at the effect of object instantiation and method invocation.

Program-id. TestBankAccounts.

01 account type BankAccount.

Procedure division.

 set account to new SavingsAccount

 set account::AccountNumber to “12345678”

 set account::Balance to 500.00

End-program.

The key point to notice is the declaration of our object’s type, BankAccount, and the creation of it, as

a SavingsAccount.

We can do this because SavingsAccount inherits (or descends) from BankAccount. The value of doing

this is not so apparent in this example but this next might help:

Method-id PerformWithdrawal.

Procedure division using by value amount as float-long

 account as type BankAccount.

 If Account::Withdraw(amount) not true

 *> perform error condition

 …

End-if

End-method.

In this case, a method receives an argument of type BankAccount from which it performs a

withdrawal action. The method does not need to know about all the different types of accounts but

whichever object type is passed in, the correct Withdraw method associated with that type is

executed, be that a savings or checking account.

This is a very useful feature of OOP as it decouples implementation details from clients that use the

classes. This in turn allows us to extend the system by adding new types of bank account but

minimizing the impact on existing code.

Under both JVM and .NET, you can only inherit from one base class but, of course, the base class

itself can inherit from a class and so on.

If a derived class needs to invoke the implementation of a method defined in the base class, it can

do so using the SUPER keyword. For example, we can call the BankAccount WithDraw method from

within the SavingsAccount class as follows:

invoke super::Withdraw(100)

SUPER can be used not only to invoke a method we have overridden in the derived class but to

invoke any public method defined in the class hierarchy we have inherited.

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

192

Casting
At times, your application will need to work with the specific type of an object rather than the

generic base type. If you find yourself with a reference to the base type, how do you get to the

derived type?

Method-id…

local-storage section.

01 Savings type SavingsAccount.

Procedure division using by value account as type BankAccount.

Set Savings to account as SavingsAccount.

Here we cast the object passed as an argument to a specific derived type. Casting one object type to

another must always be done with care as errors may occur if the type being cast at runtime is not

the type stated at compile time.

The COBOL language includes syntax to help cater for these situations, such as TYPE OF, which can

be used to test the type of an object before casting. More details of this syntax are referenced in the

additional reading section.

Interfaces
Classes and inheritance allow us to decouple implementation details from the user of the class but

there is another aspect of OOP that can help further decouple implementation, the interface.

An interface, like a class, defines a series of methods and possibly data too, but unlike a class, it does

not provide any implementation within the methods. This is because the purpose of the interface is

to merely define what behaviour a class will have – behaviour in this case being the methods and

properties defined on the class.

Here’s an example of an interface.

Interface-id ErrorHandler.

Method-id notifyError.

Procedure division using by value error-code as binary-short.

End-method.

Method-id notifyWarning.

Procedure division using by value warning-code as binary-short.

End-method.

End-interface.

This interface defines just two methods and from which we can probably deduce would be used for

logging an error of some kind.

By defining a class that supports this interface, we are said to implement the interface.

Class-id MyErrorHandler implements ErrorHandler.

Method-id notifyError.

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

193

Procedure division using by value error-code as binary-short.

 *> display message box to the user

End-method.

Method-id notifyWarning.

Procedure division using by value warning-code as binary-short.

 *> depending on configuration, ignore this or print

 *> it to the console

End-method.

End-class.

The IMPLEMENTS keyword defines the interface we intend to provide an implementation for in this

class and the compiler will check that all methods have been implemented correctly.

Unlike inheriting a class, which can only be done with a single class, you can implement as many

interfaces as you like in a single class.

We can create an instance of our class and because we have implemented the ErrorHandler

interface, we can pass an object reference of this class to any code that expects to be working with

the ErrorHandler interface.

Class ProcessData.

Working-storage section.

01 error-handler-list as type List value null.

Method-id RegisterErrorHandler static.

Procedure division using error-handler type ErrorHandler.

 If error-handler-list = null

 Set error-handler-list to new List

 End-if

 Invoke error-handler-List::Add(error-handler)

End-method.

Method-id NotifyErrorHandlers static.

Local-storage section.

01 error-handler type ErrorHandler.

Procedure division using error-code as binary-short.

 Perform varying error-handler thru error-handler-list

 Invoke error-handler::NotifyError(error-code)

 End-perform

End-method.

Method-id DoProcessing.

Procedure division.

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

194

*> do something and possible call NotifyErrorHandlers when something

*> goes wrong

…

 Invoke self::NoitifyErrorHandlers(error-code)

…

End-method.

End-class.

Program-id TestProgram.

Working-storage section.

01 error-handler type MyErrorHandler.

Procedure division.

 Set error-handler to new MyErrorHandler

 Invoke ProcessData::RegisterErrorHandler(error-handler)

End-Program

Let’s review this code as there are some new concepts as here.

First of all, we have a class, ProcessData, which during the method DoProcessing will at some point

invoke interested parties that an error has occurred. It does this by invoking methods on the

ErrorHandler interface.

This class has the capability to notify multiple parties as it allows clients to register their interface

implementation using the RegisterErrorHandler method. Each interface is stored within a list object.

We won’t explore the list object now but let’s assume such a class is provided to us by the .NET or

JVM class frameworks.

When an error does occur and the NotifyErrorHandlers method is invoked, the code makes use of

feature of the Visual COBOL syntax that allows it to iterate through the collection of error handler

interfaces contained in the list. Each iteration results in the error-handler local-storage object

reference being set to the next item in the list. The code simply calls the NotifyError method and the

implement of this decides what to do about it.

The TestProgram constructs an instance of MyErrorHandler and passes this as an argument to the

RegisterErrorHandler method. This call involves an implicit cast from the type MyErrorHandler, a

class, to the type ErrorHandler, an interface.

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

195

Class names
So far, our classes have had simple names but this could soon lead to clashes with classes created by

other people. To resolve this, we simply create classes with longer names and employ the use of

namespaces which is nothing more than a convention for naming classes.

Here’s a fully qualified class name:

com.acme.MyClass

MyClass is a different class from the follow:

com.yourcompany.MyClass

Everything leading up to the class name is considered a namespace if working in .NET or a package

name if working in JVM. In this case, com.acme and com.yourcompany.

This convention allows us to create classes that do not conflict with others classes of the same

name.

Whilst this is a naming convention, compilers provide directives and syntax to make working with

namespace easier and in fact, there can be rules certain rules about the accessibility of classes within

namespaces.

When you reference a class that has a namespace you need to use its fully qualified name. For

example:

01 an-obj type com.acme.MyClass.

01 another type obj com.yourcompany.MyClass.

The COBOL compiler provides a directive that allows you to use the abbreviated name of a class.

$set ILUSING(com.acme)

When using this directive in a source file, you can then reference the shortened name:

01 an-obj type MyClass.

Whilst this is generally accepted practice, as class names can otherwise become quite long, you

should avoid needlessly importing lots of namespaces as it defeats the whole purpose of including

classes in namespace and packages. Besides, you may find you encounter a clash of class names and

in which case, you will need to disambiguate the class name by specifying the full class name.

Intrinsic types
The COBOL compiler is aware of several classes within the .NET and JVM frameworks and does not

require you to specify its fully qualified name. The two we’ll look at are String (System.String in .NET

and java.lang.String in JVM) and Object (System.Object and java.lang.Object).

Object is important because all classes ultimately inherit from this type, whether you specify it or

not. Therefore, any object can be cast to this type.

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

196

String is used commonly and is used for storing Unicode data. In both JVM and .NET, the string once

created is considered immutable. Whichever method on the string class you invoke, the result is a

new string object.

01 str-1 type System.String.

01 str-2 String.

01 str string.

All of the above declarations in .NET are the same.

Notice there is no need to call the new method when creating a string:

set str-1 to “Hello World”

You can combine strings with regular pic X fields:

01 a-pic-x pic X(10) value “something”.

display a-pic-x & str1 & “blah”

Here’s an example of using one of the many string methods:

set str-1 to str-1::Replace(“foo”, “bar”)

Notice how we assigned the result of this method to the original object. If we did not, str1 would

have remained unchanged.

The .NET and JVM frameworks
.NET and JVM provide huge frameworks of classes that provide all manner of functionality. Learning

all the classes in these frameworks can take a long time but there are many that you should get to

know quickly, particularly the collection classes.

To help illustrate the usefulness of these frameworks, let’s look at just one area, date and time

arithmetic.

01 dt1 type System.DateTime.

01 dt2 type System.DateTime.

01 ts type System.TimeSpan.

…

Set dt1 to type System.DateTime::Now

Invoke System.Threading.Thread::Sleep(1000)

Set dt2 to type System.DateTime::Now

Set ts to dt2 – dt1

display ts

This example makes light work of date time arithmetic. Let’s review what we’ve done:

First of all, we’ve declared 3 object references, 2 DateTime objects and 1 TimeSpan object.

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

197

The DateTime class provides an extensive set of routines for manipulating dates and times. To get an

idea of its capabilities, take a look at the documentation:

http://msdn.microsoft.com/en-us/library/system.datetime.aspx

The TimeSpan class is used when calculating the difference between two DateTime objects.

In the first line of code, we initialize the dt1 object reference using a static method on the

System.DateTime class, Now. There are many other ways of initializing a DateTime object but this is

a convenient way of getting the current date and time.

Set dt1 to type System.DateTime::Now

In this next line, we again make use of a static method that causes the current thread to sleep for a

specified period. You could invoke the Micro Focus CBL_THREAD_SLEEP routine to achieve the same

result.

invoke System.Threading.Thread::Sleep(1000)

The next line initializes our second DateTime object following the sleep.

Set dt2 to type System.DateTime::Now

The next line demonstrates a feature of the managed code COBOL compiler called operator

overloading.

set ts to dt2 – dt1

Operator overloading is an advanced feature of OOP and worth taking a quick look at:

When defining a class, it is also possible to provide implementation of some arithmetic operators

such as add and subtract. The DateTime class defines several operators for date and time arithmetic

and comparison.

Whilst you can perform arithmetic on objects by using the operator overloads, classes usually

provide equivalent methods you can invoke directly, as is the case for DateTime. The following line

would achieve the same:

Set ts to dt2::Subtract(dt1)

The result of either approach results in a TimeSpan object. This object contains the result of the

arithmetic expression.

Finally, we display the result. Whenever you use the DISPLAY verb with an object reference, the

compiler automatically invokes the ToString method that is defined on the base class, Object. If you

remember, all classes ultimately descend from Object. Ordinarily, the ToString method simply

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

198

returns the name of the Type, but the TimeSpan class overrides the ToString method and returns a

meaningful string about the TimeSpan object.

display ts

Reflection
When you compile a COBOL program for .NET or JVM, the compiler creates an executable that

conforms to the specification of these platforms. This specification must be adhered to by any

language supporting .NET or JVM.

Because all languages conform to a common underlying protocol, it allows classes written in any

language to be easily integrated.

Another advantage of this commonality is something called reflection. Reflection is the ability to

examine the underlying details of a given type.

With this ability, it is possible to inspect the methods that a given type provides, the arguments to

each method and even the code in the body of the method. This is a very powerful feature of the

framework and opens up many possibilities for application development. Although it may not seem

immediately obvious as to how reflection can be valuable, understanding that it possible can help

when considering how various technologies in managed code can do what they do without having

prior knowledge of how you

One example of the use of reflection is something called Intellisense. Intellisense is a feature of the

Visual Studio and Eclipse IDEs that assists the developer by showing a list of methods and properties

available on a given object.

What Next?
This appendix has provided a basic introduction to object oriented programming and has covered

many of the fundamental concepts. OOP is however an extensive subject, there are many other

areas to cover including the many technologies provided by the .NET and JVM platforms before one

could feel confident enough to build a .NET or JVM application with COBOL.

Aside from additional self-study, you should also consider a dedicated training course in C#, VB or

Java. These courses will build upon your knowledge of OOP and enable you to build applications in

Java, C# or COBOL as the principals remain the same across all of these languages – the key

difference being syntax.

A great way to accelerate your understanding of OOP and managed code frameworks is to work

directly with colleagues skilled in Visual Basic, C# or Java.

Further Reading
There are a series of examples that Micro Focus provides which you can explore as required. You will

find these from your Windows start menu as:

Copyright © Micro Focus 2015-2016. All rights reserved.

19 Appendix I

199

When you have got there you can explore many features:

Copyright © Micro Focus 2015-2016. All rights reserved.

20 Appendix II

200

20 Appendix II – Further Features

Introduction
This appendix lists a number of other language features of COBOL that have not been covered in the

previous modules. These features will be covered very briefly in this appendix. If you require more

detail then you will find this in the Visual Studio Help system:

If you select Product Documentation here you will be taken to the following:

Copyright © Micro Focus 2015-2016. All rights reserved.

20 Appendix II

201

From here you will be able to explore the full features of COBOL.

For example, to get a full alphabetical list of all the reserved words you can look at the following:

Copyright © Micro Focus 2015-2016. All rights reserved.

20 Appendix II

202

Module Objectives
The intention of this module is to briefly show you some additional features of COBOL which you

may decide to use or may come across in other pieces of COBOL code.

Other Data File types
So far we have covered the use of:

 Sequential data files

 Indexed data files

COBOL also fully supports the use of:

 Line sequential data files (PC text files). These files are normally used for producing reports.
The syntax for the SELECT statement is:
SELECT REPORT-FILE ASSIGN REPNAME
 ORGANIZATION IS LINE SEQUENTIAL.

 Relative data files. These files are an alternative to using indexed files. They are not very

commonly used. The syntax for the SELECT statement is:
SELECT RE-FILE-FILE ASSIGN REPNAME

 ORGANIZATION IS RELATIVE.

Relative files do not need a key (although many do have keys stored on them). Without a key the

access is physical offset in the file. If you want to read more about relative files, good starting points

are:

 http://www.cse.ohio-state.edu/~sgomori/570/relcob.html or

 http://cayfer.bilkent.edu.tr/~cayfer/ctp108/relative.htm

Copyright © Micro Focus 2015-2016. All rights reserved.

http://www.cse.ohio-state.edu/~sgomori/570/relcob.html
http://cayfer.bilkent.edu.tr/~cayfer/ctp108/relative.htm

20 Appendix II

203

Report writing
COBOL has extensive support of complex report writing. This was briefly mentioned in an earlier

module and will not be covered here.

This is done in a new COBOL data division section called REPORT SECTION.

A good reference to check out the details of this is http://www.pgrocer.net/Cis52/rptwritr.html

Sorting data files
COBOL can directly SORT data files using the SORT verb and a new file definition for the sort file.

We will not look at this in any detail, but you may want to check out the following address for more

details:

 http://theamericanprogrammer.com/programming/10-sortex1.shtml

Local-Storage Section
You will possible have seen that some methods have used LOCAL-STORAGE Section rather than

WORKING-STORAGE section. To all intents the way we have used these so far is identical. For our

needs so far, they are interchangeable.

However, this has another function. The presence of a LOCAL-STORAGE Section in a method

indicates that this method can be used recursively. i.e. a method can call itself.

Intrinsic functions
COBOL supports a large number of “intrinsic” functions such as:

 Sine

 Square Root

 Cosine

 Tangent

 Annuity

 Date conversion

 Log

 Max, Min

 Random etc. etc.

The syntax for using an intrinsic function is illustrated by the use of the Square Root function:

 COMPUTE WS-RESULT = FUNCTION SQRT (WS-NUMBER)

Library routines
In addition, Microfocus COBOL supports a number of library routines which you may find useful. E.g.

Copyright © Micro Focus 2015-2016. All rights reserved.

http://www.pgrocer.net/Cis52/rptwritr.html
http://theamericanprogrammer.com/programming/10-sortex1.shtml

20 Appendix II

204

Module Summary
This appendix has briefly shown you some additional features of COBOL which you may decide to

use or may come across in other pieces of COBOL code.

To explore these extra variants you should look inside the help system under Product

Documentation.

Once you have selected Product Documentation. You can search for whatever you require.

In addition, there is a very healthy Micro Focus Community.

In particular you have also seen how Micro Focus provided you with a mechanism to generate

COBOL code to access a relational database.

Copyright © Micro Focus 2015-2016. All rights reserved.

